Схема настольной лампы на светодиодах. Как сделать светильник из светодиодов своими руками? Собираем простую LED-лампу

Светодиодные источники света быстро завоевывают популярность и вытесняют неэкономичные лампы накаливания и опасные люминесцентные аналоги. Они эффективно расходуют энергию, долго служат, а некоторые из них после выхода из строя подлежат ремонту.

Чтобы правильно произвести замену или починку сломанного элемента, потребуется схема светодиодной лампы и знание конструкционных особенностей. А эту информацию мы в деталях рассмотрели в нашей статье, уделив внимание разновидностям ламп и их конструкции. Также мы привели кратких обзор устройства самых популярных led моделей от известных производителей.

Близкое знакомство с конструкцией LED-светильника может потребоваться только в одном случае – если необходимо отремонтировать или усовершенствовать источник света.

Домашние умельцы, имея на руках комплект элементов, могут на светодиодах, но новичку это не по силам.

Учитывая, что приборы со светодиодами стали основой систем освещения современных квартир, умение разбираться в устройстве ламп и ремонтировать их может сохранить весомую часть семейного бюджета

Зато, изучив схему и имея элементарные навыки работы с электроникой, даже новичок сможет разобрать лампу, заменить сломанные детали, восстановив функциональность прибора. Чтобы ознакомиться с подробными инструкциями по выявлению поломки и самостоятельному ремонту светодиодной лампы, переходите, пожалуйста, .

Имеет ли смысл ремонт LED-лампы? Безусловно. В отличие от аналогов с нитью накаливания по 10 рублей за штуку, светодиодные устройства стоят дорого.

Предположим, «груша» GAUSS – около 80 рублей, а более качественная альтернатива OSRAM – 120 рублей. Замена конденсатора, резистора или диода обойдется дешевле, да и срок службы лампы своевременной заменой можно продлить.

Существует множество модификаций LED-ламп: свечи, груши, шары, софиты, капсулы, ленты и др. Они отличаются формой, размером и конструкцией. Чтобы наглядно увидеть отличие от лампы накаливания, рассмотрим распространенную модель в форме груши.

Вместо стеклянной колбы – матовый рассеиватель, нить накала заменили «долгоиграющие» диоды на плате, лишнее тепло отводит радиатор, а стабильность напряжения обеспечивает драйвер

Если отвлечься от привычной формы, можно заметить только один знакомый элемент – . Размерный ряд цоколей остался прежним, поэтому они подходят к традиционным патронам и не требуют смены электросистемы. Но на этом сходство заканчивается: внутреннее устройство светодиодных приборов намного сложнее, чем у ламп накаливания.

LED-лампы не предназначены для работы напрямую от сети 220 В, поэтому внутри устройства заключен драйвер, являющийся одновременно блоком питания и управления. Он состоит из множества мелких элементов, основная задача которых – выпрямить ток и снизить напряжение.

Разновидности схем и их особенности

Чтобы создать оптимальное напряжение для работы устройства на диодах, собирают на основе схемы с конденсатором или понижающим трансформатором. Первый вариант – более дешевый, второй применяют для оснащения мощных ламп.

Существует и третья разновидность – инверторные схемы, которые реализуют или для сборки диммируемых ламп, или для устройств с большим числом диодов.

Вариант #1 - с конденсаторами для снижения напряжения

Рассмотрим пример с участием конденсатора, так как подобные схемы являются распространенными в бытовых лампах.

Элементарная схема драйвера LED-лампы. Основными элементами, гасящими напряжение, являются конденсаторы (C2, C3), но ту же функцию выполняет и резистор R1

Конденсатор C1 защищает от помех электросети, а C4 сглаживает пульсации. В момент подачи тока два резистора – R2 и R3 – ограничивают его и одновременно предохраняют от короткого замыкания, а элемент VD1 преобразует переменное напряжение.

Когда прекращается подача тока, конденсатор разряжается при помощи резистора R4. К слову, R2, R3 и R4 используются далеко не всеми производителями светодиодной продукции.

Если существует опыт работы с контроллерами, можно заменить элементы схемы, перепаять ее, слегка усовершенствовать.

Однако скрупулезная работа и усилия по поиску элементов не всегда оправданы – легче купить новый осветительный прибор.

Вариант #1 – LED-лампа BBK P653F

У марки BBK существует две очень похожие модификации: лампа P653F отличается от модели P654F лишь конструкцией излучающего узла. Соответственно, и схема драйвера, и конструкция прибора в целом у второй модели построена по принципам устройства первой.

Вариант #4 – лампа Jazzway 7,5w GU10

Внешние элементы лампы отсоединяются легко, поэтому до контроллера можно добраться достаточно быстро, открутив две пары саморезов. Защитное стекло держится на защелках. На плате зафиксированы 17 диодов с последовательной связью.

Недостаток схемы в том, что функцию ограничителя тока выполняет обычный конденсатор. При включении лампы возникают броски тока, результатом чего является или перегорание светодиодов, или выход из строя светодиодного моста

Радиопомех не наблюдается – и все благодаря отсутствию импульсного контроллера, но на частоте 100 Гц наблюдаются ощутимые пульсации света, доходящие до 80% от максимального показателя.

Результат работы контроллера – 100 В на выходе, но по общей оценке лампа относится скорее к слабым приборам. Стоимость ее явно завышена и приравнена к стоимости марок, которые отличаются стабильным качеством продукции.

Другие особенности и характеристики ламп этого производителя мы привели в .

Самоделка из подручных элементов:

Сейчас на коммерческих интернет-площадках можно приобрести наборы и отдельные элементы для сборки осветительных приборов различной мощности.

При желании можно отремонтировать вышедшую из строя LED-лампу или доработать новую, чтобы получить лучший результат. При покупке рекомендуем тщательно проверять характеристики и соответствие деталей .

У вас остались вопросы после прочтения изложенного выше материала? Или вы хотите добавить ценные сведения и другие схемы лампочек, исходя из личного опыта ремонта led ламп? Пишите свои рекомендации, добавляйте фото и схемы, задавайте вопросы в блоке комментариев ниже.

Изготовление светодиодной лампы на 220 В своими руками занятие интересное, требующее терпения. Дополнительно нужны небольшие знания физики, и умение паять. Главная задача состоит в создании схемы преобразователя переменного тока сети на постоянный в 12 В, на котором работает светодиодный светильник.

Светодиодная лампа

Представляет маленький светящийся диодный элемент, работающий от постоянного тока в основном в 12В. Для создания ламп их собирают по несколько, в зависимости от требуемой интенсивности света . Преимущества такого освещения:

  • мизерное потребление электроэнергии;
  • срок службы от 100 000 часов;
  • могут работать сутками, без отключения;
  • в продаже имеется большой выбор различных моделей.

Основной недостаток в высокой стоимости готовых светодиодных светильников. Продавцы плохо разбираются в вопросе и не могут квалифицированно ответить на ваши вопросы. В самой характеристике лампы не учитываются потери при прохождении света через рассеиватель , матовое стекло и свойства отражателя.

На упаковке светильника указаны расчетные данные, исходящие из характеристик и количества светодиодных элементов. Поэтому по факту световой поток купленной лампы значительно ниже требуемого и освещение слабое. Сами лампы и детали для создания схем стоят копейки. Поэтому проще всего умельцам сделать все своими руками.

Использование светодиодных светильников

В домах и квартирах часто необходимо постоянное освещение какого-то места. Это могут быть лестницы и детские комнаты, туалеты, где нет окон, а в доме живет ребенок, который не может дотянуться до выключателя.

Неяркий свет и малое потребление энергии позволяют ставить освещение в подъездах и на крыльце, перед калиткой и воротами гаража. Светильники с мягким свечением за счет гашения бликов, применяются для освещения рабочих столов в кабинетах и на кухне.

Создание светодиодного светильника своими руками

Многих мучает вопрос, как сделать светодиодную лампу своими руками и возможно ли это. Схем для создания светодиодного освещения, работающего от сети переменного тока в 220 В, много, все они решают ряд общих задач:

При создании светодиодного освещения своими руками приходится решать еще и задачи:

  • куда поместить схемы и светодиоды;
  • как изолировать осветительную конструкцию;
  • правильный теплообмен.

Схемы светодиодных ламп

Выравнивание переменного пота и создание необходимой мощности и сопротивления для светодиодных светильников решается двумя способами. Схемы условно можно разделить на:

  • с диодным мостом;
  • резисторные, с четным количеством светодиодных элементов.

Каждый вариант имеет простые схемы и свои преимущества.

Схема преобразователя с диодным мостом

Диодный мост состоит из 4 диодов , направленных в разные стороны. Его задача превратить синусоидальный переменный ток в пульсирующий. Каждая полуволна проходит через два элемента , и минус меняет свою полярность.

В схеме, для светодиодной лампы, перед мостом со стороны источника переменного тока на плюс подсоединяется конденсатор С10,47х250 v. Перед минусовой клеммой ставится сопротивление на 100 Ом. Позади моста, параллельно ему, устанавливается еще один конденсатор – С25х400 v, который сглаживает перепад напряжений. Сделать своими руками такую схему легко , достаточно иметь навыки работы с паяльником.

Светодиодный элемент

Плата со светодиодными элементами применяется стандартная, от вышедшего из строя светильника. Необходимо проверить перед сборкой, чтобы все детали были рабочими. Для этого используется аккумулятор на 12 V, можно от автомобиля. Нерабочие элементы можно заменить, распаяв аккуратно контакты и поставив новые. Внимательно следите за расположением ножек анода и катода. Они соединяются последовательно.

При замене 2 – 3 деталей, вы просто припаиваете их в соответствии с положением, которое занимали вышедшие из строя элементы.

Собирая новый светодиодный светильник своими руками, нужно помнить простое правило. Лампы соединяются по 10 последовательно , затем эти цепи подключаются параллельно. На практике это выглядит так:

  1. 10 светодиодов ставите в ряд и спаиваете ножки анод одной с катодом второй. Получается 9 соединений и по одному свободному хвостику по краям.
  2. Все цепочки припаиваете к проводам. К одному катодные концы, к другому анодные.

В текстах часто используется словесное обозначение контактов, на схемах значки. Напоминание для начинающих электриков:

  • катод, положительный - «+», присоединяется к минусу;
  • Анод отрицательный – «-», присоединяется к плюсу.

При сборке схем своими руками, следите, чтобы спаянные концы не касались других. Это приведет к замыканию и сгорит вся схема, которую вы сумели сделать.

Схемы для более мягкого свечения

Чтобы светодиодная лампа не раздражала глаза миганием, в схему сборки надо добавить несколько деталей. В целом преобразователь тока состоит из:

  • диодный мост;
  • конденсаторы на 400 нФ и 10 мкФ;
  • резисторы на 100 и 230 Ом.

Для защиты от скачков напряжения, вначале ставится резистор на 100 Ом, и за ним впаивается конденсатор в 400 нФ . В предыдущем варианте они установлены на разных концах входа. За конденсатором после диодного моста устанавливается еще один резистор 230 Ом. За ним идет последовательная цепочка светодиодов (+).

Схемы на резисторах

Самая простая схема для желающих сделать все своими руками состоит из двух резисторов 12 k и двух цепочек с одинаковым количеством светодиодных элементов припаиваются соединенные последовательно лампы с разной направленностью. Со стороны R 1 одна полоса припаивается катодом, вторая – анодом. Другой отводок к R 2 наоборот.

Это создает более мягкое свечение ламп, поскольку светодиодные элементы горят поочередно и пульсация вспышек для глаз практически незаметна. Такие светильники можно использовать даже в качестве местного освещения при работе за столом, заменив, таким образом, обычную настольную лампу.

Специалисты, которые сделали своими руками не одну лампу, рекомендуют собирать не менее 20 светодиодов для этой схемы . Чаще используют 40. Это обеспечивает хорошее освещение и схема собирается легко. Для большего количества сложно производить качественную пайку схемы, не задев соседних контактов. Да и собирать ее в корпус трудно.

Можно делать светильник из 4 или 6 более мощных светодиодов. Для расчета схем использовать специальный калькулятор, который можно найти в интернете.

При создании различных схем своими руками из светодиодных приборов и других, можно использовать для правильного расчета онлайн-калькулятор . Его легко найти на сайтах, которые посвящены электрическим приборам и описанию, как их сделать. Его использование значительно упростит процесс расчета силы тока, сопротивления и позволит проверить правильность подбора деталей.

Корпуса для светодиодных ламп

Для удобного включения светодиодной лампы, которую сделали своими руками, в обычные осветительные приборы, используют:

  • цоколи обычных ламп накаливания;
  • корпуса от энергосберегающих ламп;
  • галогенные лампы;
  • самодельные приспособления.

Каждый специалист, делая светодиодную лампу своими руками, выбирает наиболее подходящий вариант. Цоколь дает возможность закрутить лампу в обычный патрон и одновременно обеспечивает теплообмен. Перегреваясь, светодиодная лампа быстрее выходит из строя.

Цоколь с лампы накаливания

Аккуратно отделяем стеклянную колбу и извлекаем спираль. Затем внутрь цоколя помещается схема и сверху на плате крепятся лампы. Недостаток такого основания в неприглядном виде и плохой изоляции.

Корпус энергосберегающей лампы

Самый удобный и практичный вариант для создания светодиодной лампы своими руками. Способы крепления диодов могут быть разные. Вначале аккуратно разбирается сгоревшая лампа. Затем из нее извлекается плата преобразователя. Далее, имеются варианты.

Можно разместить в отверстиях крышки, которые сделаны под стеклянные колбы. Это в варианте лампы с тремя дугообразными световыми элементами. Схема располагается внутри цоколя , обеспечивающего теплообмен. Светодиоды вставляются в уже готовые отверстия и крепятся в них.

Готовую плату со светодиодами можно поместить в цоколь с помощью простой пластиковой крышки от бутыли с водой. Можно использовать сделанный самостоятельно кружок и просверлить в нем отверстия под диоды. В результате удобно использовать и эстетичный вид.

Некоторые умельцы, делая своими руками, используют корпус галогенной лампы. Неудобство такого варианта в отсутствии обычной для цоколя возможности закрутить лампу в патрон. Такой вариант больше подходит для создания своими руками индикаторов и светильников постоянного тока.

По статистическим данным, было выявлено, что стоимость светодиодных светильников значительно понизилась. Такие показатели повлекли за собой увеличение приобретения высокоэкономичных средств освещения в частные дома и квартиры. Тем, кто отлично управляется с паяльником, вовсе не потребуется поход в магазин для того, чтобы обустроить свое жилье, так как можно создать светильник своими руками, без обращения к заводским изделиям. Таким образом можно сэкономить большую сумму денег и подобрать дизайн прибора такой, который будет подходить под интерьер квартиры.

Схема светодиодного светильника.

У светодиодов есть своя особенность, заключающаяся в режиме работы постоянного тока и в низкой степени напряжения. Потому для осуществления процесса освещения преимущественно используются такие устройства, как блоки питания. Некоторые самостоятельно паяют электрические схемы на платах, что не так уж просто, особенно для тех, кто не знаком с этой сферой деятельности.

Создавая светильник своими руками, лампу или любой другой осветительный прибор, нужно брать в учет тот факт, что одна треть от такой единицы, как номинальная мощность, будет уходить на преобразование светового потока, остальные же части нужны для тепловых потерь.

Важно помнить о том, что при перегреве светодиодов может произойти сокращение срока работы. Собирая самостоятельно любую конструкцию из светодиодов, должно предусматриваться отведение тепла от всей конструкции во время подачи питания.

Какие светодиоды стоит использовать?

Таблица разновидностей светодиодов.

Первоначально желательно выбрать определенный вид светодиодов, который потребуется. Если рассматривать мощные и маломощные, то первый вид намного выгоднее, из-за того что трудоемкость выше. Отношение маломощных к мощным составляет 20:1. По таким показателям можно сделать вывод о том, что с маломощными светодиодами предстоит намного больше спаивания. Среди мощных светодиодов можно выделить пару разновидностей, одни из которых предназначены для выводных монтажных работ, а другие — для поверхностных. В большинстве случаев используют выводные, так как с ними монтажные работы проводятся намного быстрее.

Источники питания

Для долговечности светодиодов нужен отличный драйвер, а по-другому его можно назвать источником питания. Драйвер может быть корпусным и бескорпусным, с присутствием гальванической развязки и без нее. Если рассматривать именно переделку светильников, то желательно применять вид бескорпусного драйвера, в котором идет гальваническая развязка.

Вид без корпуса очень полезен тем, что он компактен по размеру, а также имеет меньшую степень нагревания. Но есть и свои определенные недостатки, которые проявляются в сложности при креплении.

Использование гальванической развязки, как правило, требуется для обеспечения безопасности, так как в этом случае можно избежать удара током. При отсутствии такой технологии некоторые получают минимальные удары электрического разряда.

Электрическая схема светодиодного светильника.

При выборе драйверов желательно обращать свое внимание на указание минимального и максимального количества светодиодов, которое можно подвести к подключению. Если же такие данные отсутствуют, то стоит просматривать выходные показатели напряжения источника питания.

Источник питания может быть двух видов, один из которых состоит из фильтра электромагнитной помехи, а второй, соответственно, его не имеет. Устройства, которые не имеют фильтров, в большей степени обладают помехами электромагнитных волн и проведения частот на приемники.

Использование радиатора для светодиодов

Для того чтобы пользоваться светодиодом успешно и долго, стоит применять радиаторы, так как они такие же важные составляющие процесса, как и источники питания. Радиатор должен быть выполнен исключительно из алюминия. Найти такой материал очень просто, так как у каждого человека найдется старая посуда из алюминия. Для того чтобы можно было рассеять тепло со светодиода, нужно брать в учет именно размер площади, а не толщину. Стоит отметить, что на компьютерных кулерах установлены вентиляторы, так как без такого устройства тепло от светодиода будет отводиться с минимальной скоростью.

Процесс изготовления светильника своими руками

Перед тем как начать разработку светильника самостоятельно, желательно подготовить все необходимые инструменты. В частности, желательно обзавестись:

Схема корпуса светильника.

  • базовыми и запасными светодиодами;
  • микротрансформатором;
  • мультиметром;
  • красными светодиодными лампочками;
  • резистором на 100 Ом;
  • конденсатором на 400 мкФ и на 10 мкФ;
  • патроном;
  • обезжиривателем;
  • паяльником;
  • монтажным клеем;
  • доской;
  • абажуром.

Первоначально желательно провести проверку каждого светодиода, который будет включен в цепь, и качество питающего напряжения в сетевом кабеле. Чтобы осуществить такой процесс, стоит использовать микротрансформатор. Таким образом, при настраивании и при тестовой проверке будущего прибора освещения регулировка будет проводиться намного плавне.

Для того чтобы измерять, падает напряжение при постоянном токе и воздействии на резистор или нет, и для точного расчета тока диодов применяют мультиметр. Как правило, при самостоятельной сборке стараются использовать шестивольтовые светильники, но нередко могут понадобиться и те, которые рассчитаны на 12 вольт.

Сами же диоды должны быть высокого качества, чтобы можно было избежать неприятного голубоватого свечения, которое не просто испортит внешний вид светильника, но также и навредит глазам.

Схема подключения светодиодных частей на корпус светильника.

Схему сборки можно назвать очень простой и без потери для драйвера. Единственный недочет состоит в отсутствии изоляции у проводов, то есть сам светильник из светодиодов может быть подвержен токовым ударам. Ориентируясь на последние данные, стоит учитывать, что желательно беречь лампу от падения, но впоследствии схема может быть модернизирована.

  1. Резисторы нужны для защиты платы при подключении к сети, чтобы избежать скачка напряжения. В случае его отсутствия желательно применение крошечного выпрямительного моста.
  2. Использование конденсатора 400 мкФ требуется для того, чтобы установить энергию на нужном уровне, которая требуется для передачи и дополнительного добавления ламп, при свободной пропускной способности. Перед работой желательно убедиться в том, что в работе идет именно вид номинального напряжения, которое, как правило, вполовину больше обычного тока в сети.
  3. Применение конденсатора 10 мкФ нужно для создания идеального источника света, а также для исключения таких последствий, как блики и мигания. Высота номинального напряжения в этом случае должна превышать показатели предыдущего конденсатора вдвое.

Если нет возможности приобретения нового патрона, его можно изъять из старой лампы. Для этого нужно аккуратно разбить лампочку, причем так, чтобы не повредилась гнездовая часть патрона. После такой процедуры сам патрон стоит защитить и обработать при помощи обезжиривателя. Важно, что перед установкой отверстие в патроне проверяется еще раз на наличие остатков лампы, которые могут навредить будущей системе освещения, и желательно провести дополнительную обработку при помощи ацетона или спирта.

Крепление патрона к резистору и транзистору

Далее дело идет за паяльными работами. Посредством паяльника проводится установка крошечного выпрямителя, причем материалы должны быть заранее подготовлены и находиться под рукой. Поверхность обрабатывается в обязательном режиме, а сами действия должны быть максимально точны и аккуратны, для того чтобы исключить повреждения уже установленных деталей.

Для того чтобы провести термоусадку, применяют любой вид монтажного клея, так как материал должен быть предназначен для проведения подобных действий, и ни в коем случае не канцелярского назначения.

Установка светодиодных ламп считается самым важным и интересным моментом во всей сборке светильника. Основой будет служить заранее купленная или же приготовленная от старых приборов доска. Если она принадлежала старым конструкциям, то, соответственно, доска должна быть очищена от деталей и различных заусенцев.

Проводя и подключая каждый контакт, их стоит проверять и очищать, если сигнал не поступает. Остается совсем немного — и светильник сможет радовать своего создателя. Для того чтобы завершить работу, нужно попросту собрать все детали, которые имеются. Если быть точнее, то каждая деталь припаивается к планшетке и к устройству резистора. Далее все изолируется при помощи клея, проверяются соединения между диодами для правильного распространения света.

Можно ли своими руками от начала до конца сделать светодиодную лампу (LED), работающую от напряжения 220 вольт? Оказывается, можно. В этом увлекательном занятии вам помогут наши советы и инструкции.

Преимущества светодиодных ламп

Светодиодное освещение в доме - это не просто современно, но и стильно, и ярко. Консервативным любителям ламп накаливания остаются слабенькие «лампочки Ильича» – Федеральный закон «Об энергосбережении», принятый в 2009 году, с 1 января 2011 года запрещает производство, импорт и продажу ламп накаливания мощностью более 100 Вт. Продвинутые пользователи давно перешли на компактные люминесцентные лампы (КЛЛ). Но светодиоды обходят всех своих предшественников:

  • энергопотребление светодиодной лампы меньше в 10 раз, чем у соответствующей лампы накаливания, и почти на 35% меньше, чем у КЛЛ;
  • сила света LED лампы больше соответственно на 8 и на 36%;
  • достижение полной мощности светового потока происходит мгновенно, в отличие от КЛЛ, которым для этого требуется около 2 минут;
  • себестоимость - при условии изготовления лампы самостоятельно - стремится к нулю;
  • светодиодные лампы экологичны, потому что не содержат ртути;
  • срок службы светодиодов измеряется десятками тысяч часов. Поэтому LED лампы практически вечны.

Сухие цифры подтверждают: за LED - будущее.

Конструкция современной заводской LED лампы

Светодиод здесь изначально собран из множества кристаллов. Поэтому для того, чтобы собрать такую лампу, не нужно припаивать многочисленные контакты, надо присоединить лишь одну пару.

Типы светодиодов

Светодиод - полупроводниковый многослойный кристалл с электронно-дырочным переходом. Пропуская через него постоянный ток, мы получаем световое излучение. От обычного диода светодиод отличается и тем, что при неправильном подключении он немедленно сгорает, так как имеет малое значение пробивного напряжения (несколько вольт). Если светодиод перегорает, его надо полностью менять, ремонт невозможен.

Есть четыре основных типа светодиодов:


Самодельная и правильно собранная LED лампа будет служить многие годы, при этом её можно будет ремонтировать.

Перед тем как приступить к самостоятельной сборке, нужно выбрать способ электропитания для нашей будущей лампы. Вариантов много: от батарейки до сети переменного тока на 220 вольт - через трансформатор или напрямую.

Проще всего собрать LED на 12 вольт из перегоревшей «галогенки». Но она потребует довольно массивного внешнего блока питания. Лампа же с обычным цоколем, рассчитанная на напряжение 220 вольт, подходит к любому патрону в доме.

Поэтому в нашем руководстве мы не будем рассматривать создание 12-вольтового LED источника света, а покажем пару вариантов конструирования лампы на 220 вольт.

Поскольку мы не знаем уровня вашей электротехнической подготовки, то не можем дать гарантии, что у вас на выходе получится правильно работающий прибор. Кроме того, вы будете работать с опасным для жизни напряжением, и если что-то будет сделано неточно и неправильно, возможны повреждения и ущерб, за что мы не будем нести ответственность. Поэтому будьте осторожны и внимательны. И у вас всё получится.

Драйверы для светодиодных ламп

Яркость свечения светодиодов прямо зависит от силы тока, проходящего через них. Для устойчивой работы они нуждаются в источнике постоянного напряжения и стабилизированном токе, не превышающем предельно допустимую для них величину.

Резисторами - ограничителями тока - можно обойтись лишь для маломощных светодиодов. Можно упростить несложный расчёт количества и характеристик резисторов, найдя в сети калькулятор светодиодов, в котором не только выдаются данные, но и создаётся готовая электрическая схема конструкции.

Для питания лампы от сети необходимо использовать специальный драйвер, преобразующий входное переменное напряжение в рабочее для светодиодов. Простейшие драйверы состоят из минимального количества деталей: входного конденсатора, нескольких резисторов и диодного моста.

В схеме простейшего драйвера через ограничительный конденсатор напряжение питания подаётся на выпрямительный мост, а затем на лампу

Подключение мощных светодиодов осуществляется через электронные драйверы, контролирующие и стабилизирующие ток и имеющие высокий КПД (90-95%). Они обеспечивают стабильный ток даже при резких изменениях напряжения питания в сети. Резисторы этого делать не умеют.

Рассмотрим самые простые и чаще всего используемые драйверы для светодиодных ламп:

  • линейный драйвер совсем прост и применяется для малых (до 100 мА) рабочих токов или в случаях, когда напряжение источника равно падению напряжения на светодиоде;
  • импульсный понижающий драйвер более сложен. Он разрешает запитывать мощные светодиоды источником намного более высокого напряжения, чем необходимо для их работы. Недостатки: большой размер и электромагнитные помехи, генерируемые дросселем;
  • импульсный повышающий драйвер используется, когда рабочее напряжение светодиода больше, чем напряжение, получаемое от источника питания. Недостатки те же, что и у предыдущего драйвера.

В любую LED лампу на 220 вольт для обеспечения оптимального режима работы всегда встроен электронный драйвер.

Чаще всего несколько неисправных светодиодных ламп разбирают, удаляют перегоревшие светодиоды и радиодетали драйвера, а из целых монтируют одну новую конструкцию.

Но можно сделать светодиодную лампу и из обычной КЛЛ. Это вполне себе привлекательная идея. Мы уверены, что у многих рачительных хозяев в ящиках с деталями и запчастями сохраняются неисправные «энергосберегайки». Выкинуть жалко, применить некуда. Сейчас мы расскажем, как из энергосберегающей лампы (цоколь E27, 220 В) создать светодиодную лампу буквально за пару часов.

Неисправная КЛЛ всегда даёт нам качественный цоколь и корпус под светодиоды. Кроме того, из строя обычно выходит именно газоразрядная трубка, но не электронное устройство для её «поджига». Действующую электронику мы опять откладываем в загашник: её можно разобрать, а в умелых руках эти детали ещё послужат чему-нибудь хорошему.

Виды цоколей современных ламп

Цоколь - это резьбовая система для быстрого соединения и фиксации источника света и патрона, подачи питания источнику от электросети и обеспечения герметичности вакуумной колбы. Маркировка цоколей расшифровывается следующим образом:

  1. Первая буква маркировки обозначает тип цоколя:
    • B - со штифтом;
    • Е - с резьбой (разработан ещё в 1909 году Эдисоном);
    • F - с одним штырём;
    • G - с двумя штырями;
    • H - для ксенона;
    • K и R - соответственно с кабельным и утопленным контактом;
    • P - фокусирующий цоколь (для прожекторов и фонарей);
    • S - софитный;
    • T - телефонный;
    • W - с контактными вводами в стекле колбы.
  2. Вторая буква U, A или V показывает, в каких лампах применяется цоколь: в энергосберегающих, автомобильных или с коническим концом.
  3. Следующие за буквами цифры обозначают диаметр цоколя в миллиметрах.

Самым распространённым цоколем с советских времён считается E27 - резьбовой цоколь диаметром 27 мм на напряжение 220 В.

Создание светодиодной лампы E27 из энергосберегающей с применением готового драйвера

Для самостоятельного изготовления светодиодной лампы нам понадобятся:

  1. Вышедшая из строя лампа КЛЛ.
  2. Пассатижи.
  3. Паяльник.
  4. Припой.
  5. Картон.
  6. Голова на плечах.
  7. Умелые руки.

Мы будем переделывать под светодиодную неисправную КЛЛ марки «Космос».

Пошаговая инструкция изготовления светодиодной лампы

  1. Находим неисправную энергосберегающую лампу, которая давно лежит у нас «на всякий случай». Наша лампа имеет мощность 20 Вт. Пока главный интересующий нас компонент - цоколь.
  2. Аккуратно разбираем старую лампу и удаляем из неё все, кроме цоколя и идущих от него проводов, с которыми мы потом соединим пайкой готовый драйвер. Лампа собрана с помощью выступающих над корпусом защёлок. Нужно разглядеть их и чем-нибудь поддеть. Иногда цоколь крепится к корпусу сложнее - кернением точечных углублений по окружности. Тут придётся высверлить точки кернения или аккуратно пропилить их ножовкой. Один питающий провод припаян к центральному контакту цоколя, второй - к резьбе. Оба они очень короткие. Трубки при этих манипуляциях могут лопнуть, поэтому надо действовать осторожно.
  3. Очищаем цоколь и обезжириваем его ацетоном или спиртом. Повышенное внимание стоит уделить отверстию, которое тоже тщательно очищаем от лишнего припоя. Это нужно для дальнейшей пайки в цоколе.
  4. Крышечка цоколя имеет шесть отверстий - в них крепились газоразрядные трубки. Используем эти дырки для наших светодиодов. Подложим под верхнюю часть вырезанный маникюрными ножницами круг такого же диаметра из подходящего кусочка пластика. Сгодится и плотный картон. Он и зафиксирует контакты светодиодов.
  5. У нас имеются многокристальные светодиоды HK6 (напряжение 3,3 В, мощность 0,33 Вт, ток 100-120 мА). Каждый диод собран из шести кристаллов (соединённых параллельно), поэтому светит ярко, хотя мощным и не называется. Учитывая мощность этих светодиодов, соединяем их по три штуки параллельно.

    Каждый светодиод светит довольно ярко сам по себе, поэтому шесть штук в составе лампы обеспечат хорошую силу света

  6. Обе цепочки соединяем последовательно.

    Две цепочки из трёх параллельно включённых светодиодов каждая соединяются последовательно

  7. В результате получаем довольно красивую конструкцию.

  8. Простой готовый драйвер можно взять из сломанной светодиодной лампы. Сейчас, чтобы подключить шесть белых одноваттных светодиодов, мы используем такой драйвер на 220 вольт, например, RLD2–1.

    Драйвер подключается к светодиодам по параллельной схеме

  9. Вставляем драйвер в цоколь. Ещё один вырезанный круг пластика или картона помещаем между платой и драйвером, чтобы избежать замыкания между контактами светодиодов и деталями драйвера. Лампа не нагревается, поэтому прокладка годится любая.
  10. Собираем нашу лампу и проверяем, работает ли она.

Мы создали источник с силой света примерно 150-200 лм и мощностью около 3 Вт, аналогичный 30-ваттной лампе накаливания. Но из-за того, что наша лампа имеет белый цвет свечения, она визуально выглядит ярче. Освещаемый ею участок комнаты можно увеличить, подогнув светодиодные выводы. К тому же мы получили замечательный бонус: трехваттную лампу можно даже не выключать - счётчик её практически не «видит».

Создание светодиодной лампы с применением самодельного драйвера

Гораздо интереснее не применять готовый драйвер, а сделать его самостоятельно. Конечно, если вы хорошо владеете паяльником и имеете базовые навыки чтения электрических схем.

Мы рассмотрим травление платы после рисования на ней схемы вручную. И, конечно, всем будет интересно возиться с химическими реакциями, применяя доступные химикалии. Как в детстве.

Нам понадобятся:

  1. Кусок фольгированного медью с двух сторон стеклотекстолита.
  2. Элементы нашей будущей лампы согласно сгенерированной схеме: резисторы, конденсатор, светодиоды.
  3. Дрель или мини-дрель для сверления стеклотекстолита.
  4. Пассатижи.
  5. Паяльник.
  6. Припой и канифоль.
  7. Лак для ногтей или канцелярский корректирующий карандаш.
  8. Поваренная соль, медный купорос или раствор хлорида железа.
  9. Голова на плечах.
  10. Умелые руки.
  11. Аккуратность и внимательность.

Текстолит используется в случаях, когда нужны электроизоляционные свойства. Это многослойный пластик, слои которого состоят из ткани (в зависимости от вида волокон тканевого слоя бывают базальттекстолиты, углеродотекстолиты и прочие) и связующего вещества (полиэфирная смола, бакелит и прочее):

  • стеклотекстолит - это стеклоткань, пропитанная эпоксидной смолой. Он отличается высоким удельным сопротивлением и термостойкостью - от 140 до 1800 o C;
  • фольгированный стеклотекстолит - это материал, покрытый слоем гальванической медной фольги толщиной 35-50 мкм. Он используется для изготовления печатных плат. Толщина композита - от 0,5 до 3 мм, площадь листа - до 1 м 2 .

Схема драйвера для светодиодной лампы

Драйвер для LED лампы вполне можно сделать самостоятельно, например, опираясь на простейшую схему, которую мы рассмотрели в начале статьи. Туда необходимо лишь добавить несколько деталей:

  1. Резистор R3, чтобы разряжать конденсатор при отключении питания.
  2. Пару стабилитронов VD2 и VD3 для шунтирования конденсатора, если сгорит или оборвётся светодиодная цепь.

Если мы правильно подберём напряжение стабилизации, то сможем ограничиться и одним стабилитроном. Если же мы заложим напряжение больше 220 В, а под него выберем конденсатор, то обойдёмся вообще без дополнительных деталей. Но драйвер получится по размеру больше, и плата может не уместиться в цоколе.

Эту схему мы создали, чтобы сделать лампу из 20 светодиодов. Если их больше или меньше, нужно подобрать другую ёмкость конденсатора С1, чтобы через светодиоды по-прежнему проходил ток 20 мА.

Драйвер будет понижать напряжение сети и пытаться сгладить скачки напряжения. Через резистор и токоограничивающий конденсатор напряжение сети подаётся на мостовой выпрямитель на диодах. Через другой резистор подаётся постоянное напряжение на блок светодиодов, и они начинают светить. Пульсации этого выпрямленного напряжения сглаживаются конденсатором, а когда лампа от сети отключается, то первый конденсатор разряжается ещё одним резистором.

Будет удобнее, если конструкция драйвера смонтирована с помощью печатной платы, а не представляет собой некий ком в воздухе из проводов и деталей. Плату вполне можно сделать самому.

Пошаговая инструкция по изготовлению светодиодной лампы с самодельным драйвером

  1. Генерируем с помощью компьютерной программы собственный рисунок для травления платы согласно задуманной конструкции драйвера. Очень удобна и популярна среди радиолюбителей бесплатная компьютерная программа Sprint Layout, позволяющая самостоятельно проектировать печатные платы невысокой сложности и получать изображение их разводки. Есть ещё одна прекрасная отечественная программа - DipTrace, рисующая не только платы, но и принципиальные схемы.

    Бесплатная компьютерная программа Sprint Layout генерирует подробную схему травления платы для драйвера

  2. Вырезаем из стеклотекстолита круг диаметром 3 см. Это и будет наша плата.
  3. Выбираем способ переноса схемы на плату. Все способы - страшно интересные. Можно:
    • нарисовать схему прямо на куске стеклотекстолита канцелярским корректирующим карандашом или специальным маркером для печатных плат, который продаётся в магазине радиодеталей. Тут есть тонкость: лишь этот маркер позволяет рисовать дорожки меньше или равные 1 мм. В остальных случаях ширина дорожки, как ни старайся, не будет меньше 2 мм. Да и медные пятачки для пайки выйдут неаккуратными. Поэтому нужно после нанесения рисунка подкорректировать его бритвой или скальпелем;
    • распечатать схему на струйном принтере на фотобумаге и припарить распечатку утюгом к стеклотекстолиту. Элементы схемы покроются краской;
    • нарисовать схему лаком для ногтей, который точно есть в любом доме, где живёт женщина. Это самый простой способ, им и воспользуемся. Старательно и аккуратно кисточкой от флакона рисуем дорожки на плате. Ждём, пока лак хорошо высохнет.
  4. Разводим раствор: 1 столовую ложку медного купороса и 2 столовые ложки поваренной соли размешиваем в кипятке. Медный купорос используется в сельском хозяйстве, поэтому его можно купить в садоводческих и строительных магазинах.
  5. Опускаем плату в раствор на полчаса. В результате останутся только медные дорожки, которые мы защитили лаком, остальная медь исчезнет во время реакции.
  6. Ацетоном удаляем оставшийся лак со стеклотекстолита. Сразу же нужно залудить (покрыть припоем с помощью паяльника) края платы и места контактов, чтобы медь стремительно не окислилась.

    Места контактов пропаиваются слоем припоя, смешанного с канифолью, чтобы защитить медные дорожки от окисления

  7. Согласно схеме делаем отверстия дрелью.
  8. Пропаиваем на плате светодиоды и все детали самодельного драйвера со стороны печатных дорожек.
  9. Устанавливаем плату в корпус лампы.

    После всех проведённых операций должна получиться светодиодная лампа, эквивалентная 100-ваттной лампе накаливания

Замечания по безопасности

  1. Хотя самостоятельная сборка светодиодной лампы - не очень сложный процесс, к нему не стоит даже приступать, если вы не обладаете хотя бы начальными электротехническими знаниями. Иначе собранная вами лампа при внутреннем коротком замыкании может навредить всей электрической сети вашего дома, включая дорогие электроприборы. Специфика светодиодной техники в том, что если некоторые элементы её схемы подключить неправильно, то возможен даже взрыв. Так что надо быть предельно аккуратным.
  2. Обычно светильники используются при напряжении 220 В переменного тока. Но конструкции, рассчитанные на напряжение в 12 В, подключать к обычной сети ни в коем случае нельзя, и вы должны об этом всегда помнить.
  3. В процессе изготовления самодельной светодиодной лампы компоненты светильника часто не могут быть сразу полностью изолированы от питающей сети 220 В. Поэтому вас может серьёзно ударить током. Даже если конструкция подключена к сети через блок питания, то вполне возможно, что она имеет простую схему без трансформатора и гальванической развязки. Поэтому к конструкции нельзя прикасаться руками, пока конденсаторы не разрядятся.
  4. Если лампа не заработала, то в большинстве случаев виновата некачественная спайка деталей. Вы были невнимательны или поспешно действовали паяльником. Но не отчаивайтесь. Пробуйте дальше!

Видео: учимся паять

Странное дело: в наш век, когда в магазинах есть абсолютно всё, как правило, недорогое и весьма разнообразное, после двадцатилетней эйфории люди всё чаще возвращаются к тому, чтобы делать домашние вещи своими руками. Немыслимо расцвело рукоделие, занятия столярным и слесарным мастерством. И в этот ряд уверенно возвращается простая прикладная электротехника.

Проблемы энергосбережения все чаще встают перед потребителями электроэнергии. Для решения данной проблемы промышленность начала производить светильники на светодиодах. Правда качество производимых светильников не всегда соответствуют своей цене. Отсюда у многих появляется вопрос: “Как самому сделать светильник на светодиодах?”. Плюсы такого решения – более выгодная цена и лучшее качество, ведь Вы сами подбираете компоненты.

Светодиодные лампы имеют ряд преимуществ по сравнению с обычными лампами накаливания:

  • простота устройства;
  • долгий срок службы;
  • низкий уровень энергопотребления;
  • эксплуатация в режиме низких температур;
  • неподверженность механическим воздействиям;
  • высокая светоотдача, экономия электроэнергии;
  • экологичность;
  • влагозащищенные светодиодные ленты успешно применяются во влажных помещениях. Их даже можно использовать в аквариумах, для подсветки дна бассейнов. Светодиодные ленты применяют, когда необходимо осветить длинный объект.

Технология устройства светодиодных ламп

Несмотря на преимущества светодиодных ламп, у них есть один недостаток – высокая цена. Самодельный светодиодный светильник является выходом из положения. Это достаточно простой и не затратный процесс, даже если светильник из светодиодной ленты.

Рассмотрим его на примере обычного изделия для бытового использования. При устройстве простейшего светильника необходимы следующие материалы и детали: светодиоды-3, драйвер -1, радиатор и двухсторонний скотч. Светодиоды рекомендуется брать более мощные, так как при работе с ними трудоемкость будет намного ниже, предпочтительными считаются выводные. Рекомендуемая мощность – не более 1 Вт. Следующий этап – выбор драйвера. Правильный выбор обеспечит светодиоды нужным напряжением и долгим сроком службы. В целях обеспечения длительной работы светильника требуется определиться с материалом для радиатора. Его, желательно, изготавливать из алюминия.


Приступаем к работе:

  1. Сначала отрезается полоска скотча 6-7 мм;
  2. Обезжириваются донышки светодиодов и радиатор. Для этих целей рекомендуется пользоваться ацетоном, чтобы линза светодиода не потеряла яркость;
  3. Радиатор размечается путем наклейки скотча;
  4. Светодиоды устанавливаются на скотч и для лучшего контакта слегка прижимаются;
  5. На выводы светодиодов наносится олово и припаивается драйвер;
  6. При применении светодиодной ленты защитная пленка удаляется, и липкая сторона прикладывается на место установки.

После окончания сборки светильника, его оставляют включенным на 2-3 часа. По истечении этого срока определяется уровень нагрева радиатора – если он нагревается, значит светильник работает. При устройстве сложных и более мощных моделей потребуются другие материалы и детали, но принцип устройства такой же. Созданный светильник можно оформить в разных стилях, смотря для каких целей он будет использоваться.

Назначение и применение светодиодных ламп

Светильник, устроенный на светодиодах, можно использовать при эксплуатации объектов в разных областях. Это – объекты ЖКХ, промышленность, офисные помещения, строительные объекты и объекты дорожно-мостового хозяйства и др. Самодельные качественные светодиодные лампы, решают основную задачу по замене обычных источников света на более эффективные.

Наиболее часто они применяются для обустройства жилых домов. Среди них: люстры, домашние лампы, светильники для освещения коридоров, ванных комнат, кухонных помещений. Его применяют как источник энергии для создания оригинального дизайна, интерьера, с помощью которого можно воплотить любую дизайнерскую идею при создании настольных декоративных ночников, светильников в восточном стиле.


На базе светильника, выполненного на светодиодах, можно эффективно решить устройство внутреннего и наружного освещения, архитектурно-художественное и ландшафтное оформление, вопросы рекламы, освещение улиц и промышленных зон. Эффективность их применения обусловлена технико-экономическими показателями. Более современный вид светильников – светодиодные ленты. Они бывают универсальными, монохромными и меняющими цвета в зависимости от заданной программы. Ленты длиной 5 метров при желании можно продлить до любой длины.

Использование светильников на светодиодных лампах приносит реальную выгоду владельцам помещений, которые заменили лампы накаливания на энергосберегающие. Эффективность светодиодных ламп более чем втрое выше их электролюминесцентных аналогов. Даже при минимальных затратах на обслуживание и длительном сроке эксплуатации (до 20 лет), первые 5 лет придется экономить, зато все последующие годы получать реальную прибыль.

Как говорят специалисты, создание светодиодного светильника своими руками не является сложным процессом, на это не требуется много времени и сил. Самодельные светильники на светодиодных лампах обладают самыми прекрасными характеристиками, и по своим свойствам не уступают известным светильникам марки СПО.

При их сборке необходимо соблюдать определенные правила и следовать следующим рекомендациям:

  • при выборе светодиода для светильника, нужно обращать внимание на качество материала, так как если он дешевый, качественное изделие не получится;
  • в качестве пластинки можно использовать не только стекло, но зеркало и другие материалы;
  • когда позволяет конструкция можно вклеить несколько светодиодов и соединить их последовательно или параллельно в зависимости от источника питания;
  • если светодиодные ленты не светятся, значит вышел из строя один из светодиодов или резистор. Ленты ремонтируются просто путем замены светодиода.