Принцип работы и использование понижающего трансформатора. Что такое понижающий трансформатор Трансформатор 220 24 схема подключения

В частном доме или же в квартире большая часть электрических приборов имеет напряжение питания 220 Вольт, соответственно и электрическая сеть также имеет 220В. Но бывают случаи, когда нужно понизить напряжение до безопасных 12В для подключения светодиодных лент/ламп, галогенных ламп и других устройств, работающих от переменного тока.

Трансформатор – статичное электромагнитное устройство для преобразования переменного тока напряжения U 1 в переменный ток напряжения U 2 , той же частоты.

Основными элементами конструкции являются:

  1. Магнитопровод, собранный из тонких листов электротехнической стали;
  2. Обмотки, выполненные медными или алюминиевыми проводами;
  3. Каркас для обмоток;
  4. Изоляция;
  5. Контактные вывода высокого и низкого напряжения (ВН и НН);
  6. Каркас для монтажа.

На сегодняшний день обширно используют понижающие трансформаторы электронного типа, выполненные на основе полупроводников, работу которых дополняет интегральная схема. Они обладают конкретным превосходством в виде небольших размеров, большего КПД, незначительного веса, отсутствия нагрева и шума, способности регулировать ток и защиты от токов короткого замыкания. Однако классические продолжают активно использоваться из-за надежности и простоты конструкции.

На так называемую первичную обмотку, подается напряжение от внешнего источника. Переменный ток, протекая по ней, создает переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции переменный магнитный поток в магнитопроводе создает во всех обмотках, в том числе и первичной, электродвижущую силу. При подсоединении нагрузки на вторичную обмотку, магнитная индукция создает в витках вторичной обмотки напряжение, а от первичной обмотки будет поступать энергия, отдаваемая в цепь вторичной.

Как выбрать понижающий трансформатор

В первую очередь необходимо смотреть на его мощность и исполнение. Мощность обязана быть с запасом, то есть больше суммарной потребляемой мощности подключаемых светильников.

Чтобы определить суммарную мощность, достаточно сложить все мощности ламп и/или иных приборов, которые планируется подключить. К полученному результату накиньте еще 20% для запаса.

Пример. Допустим, имеется 5 лампочек мощностью по 10Вт и 5 лампочек по 15Вт. Суммарная мощность все сети освещения будет 125Вт, прибавим еще 20% и получим 150Вт. Таким образом, нам необходимо купить понижающий трансформатор 220/12В мощностью не менее 150Вт. Посещаем магазин, находим наиболее близкую мощность более 150 и покупаем.

При его монтаже на улице, потребуется устройство пылевлагозащищенного исполнения (лучше в корпусе из нержавеющей стали). Между тем, при большом расстоянии до светильников необходимо располагать трансформатор на улице. Это связано с падением напряжения на кабеле большей длинны.

Протяженность кабельной линии от источника до ламп обязана быть не более 3-5 метра. В случае если это расстояние увеличить, то в кабеле появятся большие потери (провод начнет греться).

Для количественной оценки падения напряжения в кабеле можно воспользоваться простой формулой:

W – суммарная мощность всех потребителей, подключенная к данному проводу, Вт;

V – напряжение источника тока, как правило, 12В или 24В;

L – длина провода, м;

S – площадь сечения провода, мм²;

ρ – значение удельного электрического сопротивление, для меди это примерно 0,018 Ом·мм²/м, для алюминия – 0,0295 Ом·мм²/м;

Для количественной оценки падения мощности на проводах можно воспользоваться следующей формулой:

Если эта мощность получится слишком большой, то, единственное верное решение для уменьшения потерь – это увеличить сечение проводника, иначе останется только гадать, что случится раньше – возгорание проводов или выход из строя светильников.

Но в том случае, когда удаленность потребителей до источника питания небольшое, трансформатор целесообразнее поставить в помещении, в непосредственной близости от источника питания 220 В – например, около щитка или в щите (на сегодняшний день производители изготавливают понижающие трансформаторы с креплением на DIN-рейку).

Понижающие трансформаторы на дин рейку легко устанавливаются в распределительные щиты и при этом в зависимости от модели занимают места всего от 2 до 6 модулей. Первичная обмотка у них электрически отделена от вторичной, что обеспечивает дополнительную защиту для людей. Имеется защита от перегрузок, выполненная на тепловое реле.

Наиболее замечательный и популярный пример, для наглядной схемы подключения - это подключение экономной системы освещения. Она необходима для реализации схемы освещения с меньшими показателями напряжения, чем классические 220 В. Чаще всего используются 12-вольтные галогенные лампы, которые применяют как в открытых, так и во встроенных светильниках.

Общая схема подключения со светильниками достаточно легка в исполнении и изображена на рисунке.

Понижающий трансформатор подключается через выключатель. Далее к нему параллельно подключаются светильники, при этом его роль заключается в снижении напряжения со стандартных 220 Вольт до 12 Вольт, требуемых для питания точечных галогеновых светильников.

Понижающий трансформатор с 220 на 12 вольт купить

На сегодняшний день в продаже имеются устройства различного исполнения и конструкции. Заказать или купить Вы можете как в розничных магазинах, так и в интернет магазинах. В последних, кстати, более выгодные цены.

Ниже Мы предлагаем Вам ознакомиться и сравнить несколько вариантов:

Модель ОСЗ- 1,0 ОСОВ-0,25 ТП1-0,25 ОСВМ-0,25 ЯТП-0,25
Ориентировочная цена, руб от 6500 от 2200 от 5300 от 5300 от 1500
Внешний вид
Мощность, кВА 1 0.25 0.25 0.25 0.25
Первичное напряжение, В 220 220 220 220 220
Вторичное напряжение, В 12, 24, 36,
42
12, 24, 36,
42, 110, 127
12, 24,
36, 42, 110
12, 24, 36,
42, 110, 127
12
Степень защиты IP20 IP65 IP20 IP55 IP31
Климатическое исполнение У2 У5 У2 ОМ5 УХЛ 4
Габариты, мм Д - 275
Ш - 155
В - 270
Д - 200
Ш - 200
В - 225
Д - 320
Ш - 160
В - 302
Д - 200
Ш - 200
В - 225
Д - 210
Ш - 145
В - 145
Вес, кг 16 5.9 13 5.9 6.5

Как видите, отличительной особенностью всех трансформаторов является конструктивное исполнение. Для наружной установки Мы рекомендуем выбрать типа ОСОВ или ОСВМ , так как они имеют водозащищенное исполнение.

Очень часто встречается такое понятие как понижающий трансформатор, другие называют его преобразователь тока. Основная задача такого устройства - преобразовать определенное напряжение переменного тока с большого значения в меньшее. То есть если определенному устройству необходимо напряжение 12 Вольт, а с розетки подается стандартно 220 Вольт, придется использовать понижающий трансформатор.

Используется такой трансформатор в сфере энергетики, электротехники, применим в производстве и различных бытовых целях.

Как работает трансформатор?

Уже сегодня создано огромное количество преобразователей тока, существуют модели низковольтные и высоковольтные. Принцип работы трансформатора достаточно прост - понижающий трансформатор отвечает за снижение поступающего тока, повышающий наоборот - увеличивает напряжение до высшего значения.


В бытовых целях это очень важное устройство, обеспечивает стабильную работу и полную безопасность домашних электрических приборов.

Приведем простой пример. Во многих домах от сети поступает ток 385 Вольт, а стандартные бытовые приборы работают только от 220В. В таком случае без понижающего трансформатора не обойтись, поэтому придется купить однофазный или трехфазный преобразователь.

Важно! Если у вас в помещении трехфазная сеть, к ней подбирается только двухфазный преобразователь. Если же сеть двухфазная, преобразователь должен использоваться только однофазного типа.

Преобразователь 380 Вольт - промышленного типа, трехфазный. Преобразователь 220 Вольт - стандартный бытовой, однофазный.

При использовании стандартного бытового трансформатора, его задача будет более простая, ведь в зависимости от модели он меняет ток на показатель 12, 36, 42 Вольта (зависит от требования бытовых приборов).

Понижающий трансформатор тока имеет несложную конструкцию. В основе лежит медная обмотка, которая намотана на стальные пластины рамки магнитопровода.

Принцип действия конструкции прост - большее значение тока проходит через одну обмотку, после этого со второй обмотки выдается меньший ток. Это стало возможно благодаря тому, что на одной обмотке расположено больше витков, а на второй меньшее количество. Если говорить на научном языке, то такой процесс называется электромагнитная индукция.


Как выбрать понижающий трансформатор?

Если вы мало разбираетесь в электрике, выбрать понижающий трансформатор будет сложно, и доверить это придется специалистам. Но при решении самостоятельно подобрать нужное устройство, обращайте внимание на такие показатели:

  • Указанная мощность бытовых или промышленных приборов должна быть меньшей, чем указанная на трансформаторе;
  • Должно подходить входное напряжение, в которое будет устанавливаться устройство;
  • Выходное напряжение должно соответствовать трансформатору.

Старайтесь не выбирать дешевые модели, ведь качественный современный преобразователь должен выдерживать аварийные ситуации и стабильно работать после их обнаружения. Например, часто случаются короткие замыкания, перенапряжение сети, перегрузка сети.

Выбирается устройство конкретно под ваши требования, главным параметром является величина входного напряжения. При визуальном осмотре на изделии пишут входное напряжение. Например, понижающий трансформатор с 220 V или 380 V. Также на корпусе должна указываться маркировка выходного напряжения, например 12 или 36 Вольт.

Обязательно обращайте внимание на мощность устройства, ведь при подборе стабилизатора напряжения придется прибавить мощность всех будущих используемых приборов и прибавить еще 20% от полученного показателя.

Особенности установки

Правила техники безопасности регламентируют правильную установку понижающих трансформаторов для их стабильной долгой работы. Важно устанавливать устройство в местах, максимально защищенных от попадания воды, пыли и различных масел. Большинство мастеров монтируют трансформаторы в защитные кожухи или шкафы.

Также важно убедиться, что человек не сможет дотронуться к трансформатору во время его работы. В обязательном порядке специалист должен заземлить трансформатор медным проводом. Старайтесь выбирать провод с минимальным сечением 2,5 мм. Также во избежание серьезных поломок время от времени придется осматривать и чинить устройство.


Разновидности трансформаторов

Существует несколько разновидностей преобразователей, которые представлены различными характеристиками и конструкцией. Даже представленные фото понижающих трансформаторов дают понять, насколько мощная и современная модель.

Однофазные - подключаются от однофазной сети, довольно простые и часто используемые в бытовых целях. Фаза и ноль устанавливается на первичную обмотку трансформатора. Считаются самыми популярными трансформаторами.

Трехфазные - более сложное устройство, ведь его задача понизить напряжение от трехфазной сети. Чаще всего используют в промышленных целях, но встречаются трансформаторы в бытовых отраслях.

Отличие от однофазной модели в том, что конструкция предполагает 3 трансформатора в одном. Также отличаются соединением обмоток, ведь могут применяться схемы в виде треугольника или звезды. Качество трехфазных моделей на высоком уровне, ведь на производстве их тщательно тестируют.

Тороидальные - довольно популярная разновидность трансформатора, особенно актуальна при работе с небольшими мощностями.

Изделие имеет круглую форму, небольшие размеры и малый вес. Чаще встречается в различных радиоэлектронных приборах. Преимущество модели в лучшей плотности тока, которая обеспечивается хорошим охлаждением обмотки на сердечнике.

Броневые - основное отличие внешнее, ведь магнитопровод устройства полностью охватывает обмотку, расположенную внутри. Такие показатели как размер, вес и цена на порядок ниже аналогов, также изделия считаются маломощными.


Стержневые - являются противоположной разновидностью броневым трансформаторам, ведь в стержневых моделях обмотка охватывает магнитопровод. Можно встретить понижающий трансформатор с 380 Вольт в подобном исполнении, ведь стержневые модели создаются средней и высокой мощности.

Особенность конструкции позволяет быстро проводить ремонт, а также быть уверенным в лучшем охлаждении трансформатора.

Преимущества понижающих трансформаторов

Понижающие трансформаторы используются в промышленности и бытовых целях уже много лет, благодаря простоте конструкции и различным требованиям электрических приборов, преобразователи играют важную роль для обеспечения безопасной работы.

К другим преимуществам устройства можно отнести:

  • Малый нагрев и безопасная длительная работа;
  • Небольшие размеры;
  • Возможность работать с различным входным напряжением, то есть трансформатор на 220 вольт будет так же стабильно работать и выдавать на выходе стабильное необходимое напряжение;
  • Монтаж и обслуживание устройства довольно простое;
  • Возможность плавной регулировки напряжения.

К сожалению, существует множество моделей сомнительного качества, по отзывам владельцев трансформаторы имеют небольшой срок службы и требуют частой замены. Также некоторые преобразователи не соответствуют указанной мощности и могут работать нестабильно.

Фото понижающих трансформаторов

Название слова «трансформатор» происходит от латинского «transformare», что в переводе означает «превращать». Научное определение для него следующее: трансформатор - это устройство, способное преобразовывать, используя свойства электромагнитной индукции, значения напряжения одной величины в значения другой без изменения частоты.

Прибор нашёл широкое применение в различных областях энергетики, электроники и радиотехники. Наиболее часто трансформаторы используются в электрических сетях и в блоках питания всевозможных электронных приборов.

Общее устройство и принцип работы

Трансформатор - это электротехнический прибор, с помощью которого происходит уменьшение или увеличение переменного электрического напряжения. Такие трансформаторы называют понижающими или повышающими. При этом следует отметить, что существуют и такие приборы, которые оставляют значение переменного напряжения неизменным, они носят название гальванические.

Любой трансформатор состоит из таких основных частей:

Трансформатор имеет в своей конструкции две или более обмоток, связанных между собой индуктивностью. Они могут быть как проволочного, так и ленточного типа и всегда покрываются изоляционным слоем. Обмотки наматываются на магнитопровод , изготовленный из мягкого ферромагнитного материала. Первичная обмотка подключается к источнику напряжения, а вторичная - к нагрузке.

Общий принцип работы устройства, вне зависимости от его вида и назначения, заключается в следующем. На первичную обмотку прибора подаётся переменное напряжение, это приводит к появлению в ней переменного тока. Этот ток, в свою очередь, приводит к созданию в сердечнике переменного магнитного поля, под действием которого происходит появление переменной электродвижущей силы (ЭДС) в обмотках. Во время подключения вторичной обмотки к нагрузке по ней начинает протекать переменный ток. Обмотка, на которую подводится электроэнергия, называется первичной. Вторая, подсоединённая к нагрузке и потребляющая ток , называется вторичной.

В зависимости от конструкции устройства бывают:

  • автотрансформаторные;
  • импульсные;
  • разделительные;
  • пик-трансформаторы.

По способу охлаждения трансформаторы бывают с воздушным охлаждением и жидкостным. Кроме того, производятся приборы с комбинированным охлаждением, жидкостно-воздушным.

К главным техническим характеристикам устройств можно отнести:

Основным показателем устройства является номинальная мощность, единица измерения которой - вольт-ампер (ВА). Маломощными принято считать устройства, передающие десятки вольт-ампер, средней мощности - сотни, а большой - до нескольких тысяч вольт-ампер.

Отдельно хочется остановиться на немаловажном параметре, таком, как коэффициент трансформации. Это значение показывает величину соотношения между входным и выходным напряжением и прямо пропорционально отношению количества витков соответствующих обмоток.

Понижающий трансформатор с 220 на 12 вольт

Трансформаторы такого вида нашли большое применение в быту и на производстве. Основное их назначение - это запитывание низковольтных устройств, таких, как приборы освещения, рассчитанные на питание 12 вольт , или применение в блоках питания.

Вместе с тем изготовители при производстве всё чаще добавляют защиту от короткого замыкания и превышения напряжения, что оказывает положительное воздействие на срок службы как всего устройства, так и подключаемой к нему нагрузки. Правда, при этом следует понимать, что в таком случае под трансформатором понимается уже не один электронный элемент, а некоторая совокупность.

Необходимость применения источников с напряжением 12 вольт

Существуют такие места , в которых низковольтное напряжение предпочтительнее. Это объекты с повышенной влажностью, повышенным требованием к безопасности. А в сырых и пожароопасных помещениях применение сети 220 вольт вообще запрещено нормами правил устройства электроустановок (ПУЭ).

Электросеть с применением понижающего трансформатора не требует дорогостоящих защитных материалов и считается условно безопасной для жизни и здоровья человека. Использовать лампочки 12 вольт в осветительной сети не только дешевле их аналогов, но и выгоднее в том плане, что срок их службы в несколько раз выше, так как они дополнительно защищены понижающим трансформатором от бросков напряжения и шумов.

Применение для источников света

Всё чаще в качестве источников света в квартирах и офисах, а также при создании интерьерных подсветок применяются галогенные и светодиодные лампы. Благодаря своей конструкции они обладают большой яркостью свечения и сроком службы.

Маленькие размеры таких источников освещения позволяют использовать их в разноплановых местах, а малый вес светильников не утяжеляет всю конструкцию, что даёт свободу действия при их монтировании как одиночных, так и в люстре. Изготавливаются галогенные светильники с разной величиной рабочего напряжения, оно составляет 6, 12, 24 вольт. Для питания галогенных ламп применяют понижающие трансформаторы двух видов - тороидальные и импульсные.

В тороидальном преобразователе в качестве основы используется магнитопровод кольцевого типа, представляющий собой геометрическую фигуру тор. Такой вид магнитопровода является практичным и обладает наибольшим КПД. Но есть и недостатки. В первую очередь - это их габариты и вес, во вторую - повышенный нагрев при работе.

Меньшими размерами, возможностью плавного запуска, наличием стабилизации обладают электронные трансформаторы, которые применяются в цифровых блоках питания. Принцип работы этих устройств отличается от тороидальных моделей, так как, кроме трансформатора, здесь применяются дополнительные электронные детали. Участвуя в преобразовании электроэнергии, он практически не нагревается. Часто такое устройство производится со встроенными защитами, что вносит дополнительные удобства при использовании и продлевает срок службы. Единственный недостаток импульсного трансформатора - его цена.

Блок питания для галогенных ламп 12 вольт

Для того чтобы использовать электронный трансформатор в качестве источника питания, к нему необходимо подключить ряд электронных деталей. В общих чертах схема такого блок питания будет работать следующим образом.

Напряжение сети 220 В попадает через фильтры на специальную часть схемы, называемую драйвер. Ток, проходя через ключевой транзистор и первичную обмотку, насыщает сердечник, образовывая ЭДС на сигнальных витках.

Появившийся ток заряжает конденсатор автоколебательного контура, напряжение на обкладках конденсатора повышается до тех пор, пока транзистор не закроется. Разность потенциалов на сигнальной обмотке исчезает, и конденсатор разряжается через неё, при этом транзисторный ключ вновь открывается. Весь процесс происходит заново, его частота составляет порядка десятков тысяч Герц. Для получения постоянного напряжения 12 В к выходу устройства подключается диодный мост со сглаживающим электролитическим конденсатором.

Расчёт и выбор трансформаторов

В различных точках продажи можно приобрести устройства с различной мощностью и параметрами. Перед тем как приступить к монтажу, необходимо рассчитать мощность подключаемой нагрузки.

Рассмотрим пример для галогенных ламп. Предположим, что у нас дома установлено десять точечных галогенных лампочек с мощностью 30 W и напряжением 12 вольт. Мощность всех осветительных приборов составит 300 W, для комфортной работы необходимо к этой мощности добавить 15 процентов. Получается, что необходимо рассматривать покупку устройства с параметром не меньше 345 ватт напряжением 12 вольт. Таким способом ведётся расчёт для любого устройства, будь то галогеновый прожектор или светодиодная лента. Из производителей следует обратить внимание на Philips, Feron, OSRAM.

При подключении важно учесть одно из свойств понижающих преобразователей. Оно заключается в том, что чем ниже напряжение, тем больше потребляется ток при неизменной мощности, а значит, и большее падение напряжения на проводах. Поэтому при монтировании низковольтных линий освещения необходимо следить за тем, чтобы длина линий от трансформатора до каждой лампочки примерно была равной. В таком случае свечение всех источников будет одинаково.

Для того чтобы использовать понижающий 12-вольтовый преобразователь для более чем одной галогенной лампы, возможно применить два способа:

  1. Параллельное соединение.
  2. Создание отдельных групп.

При первом способе все лампы подключаются параллельно друг другу. Для этого к выходу трансформатора подключается распределительная колодка, на которой и монтируется соединение. Для второго случая вся проводка разделяется на группы, содержащие равное количество источников освещения. При таком виде подключения придётся использовать на каждую линию свой трансформатор. Удобство в том, что при неполадках на одной линии вторая группа продолжает работать, а также в использовании устройств с меньшей мощностью.

Для нашего вышеприведённого примера мы можем разделить подключение на две группы. В каждую группу войдёт по пять источников света. Так как мощность линий уменьшится, то нам хватит приобрести два понижающих преобразователя по 170 ватт каждый.

Сама коммутация проводов с прибором не должна вызвать затруднения. Обычно на устройствах клеммы отмечаются надписями Input и Output, соответственно вход и выход. Если на выходе устройства присутствует постоянное напряжение, то на положительном выводе ставится знак + или эта клемма выполняется красным цветом.

Важно также отметить, что если вы захотите заменить галогенные лампочки в люстре на светодиодные, то, просто выкрутив одни и установив другие, на выходе, скорее всего, получите всевозможные мерцания. Дело в том, что трансформаторы для светодиодных ламп 12 вольт должны быть стабилизированные, в то время как для галогенных такого требования нет. И второй случай, с которым можно столкнуться: люстра совсем не включится. Это из-за того, что импульсные трансформаторы имеют защиту и автоматически отключаются при подключении к ним нагрузки с малой мощностью. Выход в таком случае только один - замена блока питания на подходящий.

Самостоятельно сделать трансформатор с 220 на 12 Вольт сможет даже начинающий радиолюбитель. Это устройство относится к машинам переменного тока, принцип работы отдаленно напоминает асинхронный мотор. Конечно, можно купить готовый трансформатор, но зачем тратить деньги, особенно в тех случаях, когда под рукой имеется достаточное количество стали для сердечника и провода для катушек? Остается только изучить немного теории и можно приступать к изготовлению устройства.

Как подобрать материалы

При изготовлении понижающего трансформатора с 220 на 12 Вольт важно использовать качественные материалы - это обеспечит высокую надежность устройства, которое впоследствии соберете на нем. Нужно отметить тот факт, что трансформатор позволяет сделать развязку с сетью, поэтому его допускается устанавливать для питания ламп накаливания и прочих приборов, которые находятся в помещениях с высокой влажностью (душевые, подвалы, и т. д.). При самостоятельном изготовлении каркаса катушки нужно использовать прочный картон или текстолит.

Рекомендуется использовать провода отечественного производства, они намного прочнее китайских аналогов, у них лучше изоляция. Можно использовать провод со старых трансформаторов, главное, чтобы не было повреждений изоляции. Чтобы слои изолировать друг от друга, можно использовать как простую бумагу (желательно тонкую), так и ФУМ-ленту, которая используется в сантехнике. А вот для изоляции обмоток рекомендуется применять ткань, пропитанную лаком. Поверх обмоток обязательно нужно нанести изоляцию - лаковую ткань или кабельную бумагу.

Как проводить расчет?

Теперь, когда все материалы готовы, можно произвести расчет трансформатора с 220 на 12 Вольт (для лампы или любого другого бытового прибора). Для того чтобы вычислить число витков первичной обмотки, нужно использовать формулу:

N = (40..60) / S.

S - это площадь сечения магнитопровода, единица измерения - кв. см. В числителе константа - она зависит от того, какое у металла сердечника качество. Ее значение может лежать в диапазоне от 40 до 60.

Расчет на примере

Допустим, у нас такие параметры:

  1. Окно в высоту 53 мм, в ширину - 19 мм.
  2. Каркас изготавливается из текстолита.
  3. Верхние и нижние щеки: 50 мм, каркас 17,5 мм, следовательно, окно имеет размер 50 х 17,5 мм.

Далее, нужно произвести расчет диаметра проводов. Допустим, нужно, чтобы мощность была равной 170 Вт. При этом на сетевой обмотке ток будет равен 0,78 А (мощность делим на напряжение). В конструкции плотность тока оказывается равной 2 А/кв. мм. Имея эти данные, можно вычислить, что нужно применять провод диаметром 0,72 мм. Допускается использовать и 0,5 мм, 0,35 мм, но ток при этом будет меньше.

Отсюда можно сделать вывод, что для питания радиоаппаратуры на лампах, например, нужно намотать 950-1000 витков для высоковольтной обмотки. Для накала - 11-15 витков (провод только нужно использовать большего диаметра, зависит от числа ламп). Но все эти параметры можно найти и опытным путем, о котором будет рассказано дальше.

Расчет первичной обмотки

При изготовлении своими руками трансформатора с 220 на 12 Вольт нужно правильно произвести расчет первичной (сетевой) обмотки. И только после этого можно начинать делать остальные. Если неверно сделаете расчет первичной, то устройство начнет греться, сильно гудеть, пользоваться им будет неудобно, да и опасно. Допустим, используется для намотки провод сечением 0,35 мм. На одном слое уместится 115 витков (50/(0,9 х 0,39)). Число слоев посчитать тоже несложно. Для этого достаточно общее количество витков разделить на то, сколько умещается в одном слое: 1000/115=8,69.

Теперь можно произвести расчет высоты каркаса вместе с обмотками. Первичная имеет восемь полных слоев, плюс к ней еще изоляция (толщина 0,1 мм): 8 х (0,1 + 0,74) = 6,7 мм. Чтобы не появились высокочастотные помехи, сетевая обмотка экранируется от остальных. Для экрана можно использовать простой провод - наматываете один слой, изолируете его и концы соединяете с корпусом. Допускается использовать и фольгу (конечно, она должна быть прочной). В общем, первичная обмотка нашего трансформатора займет 7,22 мм.

Простой способ расчета вторичных обмоток

А теперь о том, как произвести расчет вторичных обмоток, если первичная уже имеется или готова. Использовать можно такой трансформатор 220 на 12 Вольт для светодиодных лент, только обязательно установите стабилизатор напряжения. В противном случае яркость будет непостоянной. Итак, что нужно для расчета? Несколько метров провода и только, наматываете определенное количество витков поверх первичной обмотки. Допустим, вы намотали 10 (а больше и не нужно, этого предостаточно).

Дальше необходимо собрать трансформатор и подключить первичную обмотку к сети через автоматический выключатель (для подстраховки). Ко вторичной обмотке подключаете вольтметр и щелкаете автомат. Смотрите, какое значение напряжения показывает прибор (например, он показал 5 В). Следовательно, каждый виток выдает ровно 0,5 В. А теперь просто ориентируетесь на то, какое напряжение вам нужно получить (в нашем случае это 12 В). Два витка - это 1 Вольт напряжения. А 12 В - это 24 витка. Но рекомендуется взять небольшой запас - около 25 % (а это 6 витков). Потери напряжения никто не отменял, поэтому вторичная обмотка на 12 В должна содержать 30 витков провода.

Как изготовить каркас катушек

Крайне важно при изготовлении каркаса добиться полного отсутствия острых углов, в противном случае провод может повредиться, появится межвитковое замыкание. На щечках нужно отвести места, к которым будут крепиться выводные контакты от обмоток. После окончательной сборки каркаса необходимо округлить при помощи надфиля все острые грани.

Пластины из трансформаторной стали должны входить в отверстия максимально плотно, не допускается наличие свободного хода. Для намотки тонких проводов можно использовать специальное устройство с ручным или электрическим приводом. А толстые провода нужно наматывать исключительно руками без дополнительных устройств.

Блок выпрямителя

Сам по себе выдавать постоянный ток трансформатор 220 на 12 Вольт не будет, нужно использовать дополнительные устройства. Это выпрямитель, фильтр и стабилизатор. Первый выполняется на одном или нескольких диодах. Самая популярная схема - мостовая. У нее масса преимуществ, в числе основных - минимальные потери напряжения и высокое качество тока на выходе. Но допускается использовать и иные схемы выпрямителей.

В качестве фильтров используется обычный электролитический конденсатор, который позволяет избавиться от остатков переменной составляющей выходного тока. Стабилитрон, установленный на выходе, позволяет удерживать напряжение на одном уровне. В этом случае даже при наличии пульсаций в сети 220 В и во вторичной обмотке на выходе выпрямителя напряжение будет иметь всегда одно и то же значение. Это хорошо сказывается на работе устройств, которые подключаются к нему.

Николай Петрушов

Как разобраться с обмотками трансформатора, как его правильно подключить к сети и не "спалить" и как определить максимальные токи вторичных обмоток???
Такие и подобные вопросы задают себе многие начинающие радиолюбители.
В этой статье я постараюсь ответить на подобные вопросы и на примере нескольких трансформаторов (фото в начале статьи), разобраться с каждым из них..Надеюсь, эта статья будет полезной многим радиолюбителям.

Для начала запомните общие особенности для броневых трансформаторов

Сетевая обмотка, как правило мотается первой (ближе всех к сердечнику) и имеет наибольшее активное сопротивление (если только это не повышающий трансформатор, или трансформатор имеющий анодные обмотки).

Сетевая обмотка может иметь отводы, или состоять например из двух частей с отводами.

Последовательное соединение обмоток (частей обмоток) у броневых трансформаторов производится как обычно, начало с концом или выводы 2 и 3 (если например имеются две обмотки с выводами 1-2 и 3-4).

Параллельное соединение обмоток (только для обмоток с одинаковым количеством витков), производится как обычно начало с началом одной обмотки, и конец с концом другой обмотки (н-н и к-к, или выводы 1-3 и 2-4 - если например имеются одинаковые обмотки с выводами 1-2 и 3-4).

Общие правила соединения вторичных обмоток для всех типов трансформаторов.

Для получения различных выходных напряжений и нагрузочных токов обмоток для личных нужд, отличных от имеющихся на трансформаторе, можно получать путём различных соединений имеющихся обмоток между собой. Рассмотрим все возможные варианты.

Обмотки можно соединять последовательно, в том числе обмотки намотанные разным по диаметру проводом, тогда выходное напряжение такой обмотки будет равно сумме напряжений соединённых обмоток (Uобщ. = U1 + U2... + Un). Нагрузочный ток такой обмотки, будет равен наименьшему нагрузочному току из имеющихся обмоток.
Например: имеются две обмотки с напряжениями 6 и 12 вольт и токами нагрузки 4 и 2 ампера - в итоге получим общую обмотку с напряжением 18 вольт и током нагрузки - 2 ампера.

Обмотки можно соединять параллельно, только если они содержат одинаковое количество витков , в том числе намотанные разным по диаметру проводом. Правильность соединения проверяется так. Соединяем вместе два провода от обмоток и на оставшихся двух измеряем напряжение.
Если напряжение будет равно удвоенному, то соединение произведено не правильно, в этом случае меняем концы любой из обмоток.
Если напряжение на оставшихся концах равно нулю, или около того (перепад более чем в пол-вольта не желателен, обмотки в этом случае будут греться на ХХ), смело соединяем вместе оставшиеся концы.
Общее напряжение такой обмотки не изменяется, а нагрузочный ток будет равен сумме нагрузочных токов, всех соединённых параллельно обмоток.
(Iобщ. = I1 + I2... + In) .
Например: имеются три обмотки с выходным напряжением 24 вольта и токами нагрузки по 1 амперу. В итоге получим обмотку с напряжением 24 вольта и током нагрузки - 3 ампера.

Обмотки можно соединять параллельно-последовательно (особенности для параллельного соединения см. пунктом выше). Общее напряжение и ток будет, как при последовательном соединении.
Например: имеем две последовательно и три параллельно соединённые обмотки (примеры, описанные выше). Соединяем эти две составные обмотки последовательно. В итоге получаем общую обмотку с напряжением 42 вольта (18+24) и током нагрузки по наименьшей обмотке, то есть - 2 ампера.

Обмотки можно соединять встречно, в том числе намотанные разным по диаметру проводом (так же параллельно и последовательно соединённые обмотки). Общее напряжение такой обмотки будет равно разности напряжений, включённых встречно обмоток, общий ток будет равен наименьшей по току нагрузки обмотки. Такое соединение применяется в том случае, когда необходимо понизить выходное напряжение имеющейся обмотки. Так же, что бы понизить выходное напряжение какой либо обмотки, можно домотать поверх всех обмоток дополнительную обмотку проводом, желательно не меньшего диаметра той обмотки, напряжение которой необходимо понизить, что бы не уменьшился нагрузочный ток. Обмотку можно намотать, даже не разбирая трансформатор, если есть зазор между обмотками и сердечником , и включить её встречно с нужной обмоткой.
Например: имеем на трансформаторе две обмотки, одна 24 вольта 3 ампера, вторая 18 вольт 2 ампера. Включаем их встречно и в итоге получим обмотку с выходным напряжением в 6 вольт (24-18) и током нагрузки 2 ампера.
Но это чисто теоретически, на практике-же КПД такого включения будет ниже, чем если бы трансформатор имел одну вторичную обмотку
Дело в том, что протекающий по обмоткам ток - создаёт в обмотках ЭДС, и в бо льшей обмотке напряжение уменьшается по отношению к напряжению ХХ, а в ме ньшей - увеличивается, и чем больше протекающий по обмоткам ток - тем больше это воздействие.
В итоге общее расчётное напряжение (при расчётном токе) будет ниже.

Начнём с маленького трансформатора, придерживаясь вышеописанных особенностей (левый на фото).
Внимательно его осматриваем. Все выводы у него пронумерованы и провода подходят к следующим выводам; 1, 2, 4, 6, 8, 9, 10, 12, 13, 22, 23, и 27.
Дальше необходимо прозвонить омметром все выводы между собой, чтобы определить количество обмоток и нарисовать схему трансформатора.
Получается следующая картина.
Выводы 1 и 2 - сопротивление между ними 2,3 Ома, 2 и 4 - между ними 2,4 Ома, между 1 и 4 - 4,7 Ома (одна обмотка со средним выводом).
Дальше 8 и 10 - сопротивление 100,5 Ома (ещё одна обмотка). Выводы 12 и 13 - 26 Ом (ещё обмотка). Выводы 22 и 23 - 1,5 Ома (последняя обмотка).
Выводы 6, 9 и 27 не прозваниваются с другими выводами и между собой - это скорее всего экранные обмотки между сетевой и другими обмотками. Эти выводы в готовой конструкции соединяются между собой и присоединяются к корпусу (общий провод).
Ещё раз внимательно осматриваем трансформатор.
Сетевая обмотка, как мы знаем, мотается первой, хотя бывают и исключения.

На фото плохо видно, поэтому продублирую. К выводу 8 подпаян провод, выходящий от самого сердечника (то есть он к сердечнику ближе всех), потом идёт провод к выводу 10 - то есть обмотка 8-10 намотана первой (и имеет самое высокое активное сопротивление) и скорее всего является сетевой.
Теперь по полученным данным от прозвонки, можно нарисовать и схему трансформатора.

Остаётся попробовать подключить предполагаемую первичную обмотку трансформатора к сети 220 вольт и проверить ток холостого хода трансформатора.
Для этого собираем следующую цепь.

Последовательно с предполагаемой первичной обмоткой трансформатора (у нас это выводы 8-10), соединяем обычную лампу накаливания мощностью 40-65 ватт (для более мощных трансформаторов 75-100 ватт). Лампа в этом случае сыграет роль своеобразного предохранителя (ограничителя тока), и защитит обмотку трансформатора от выхода её из строя при подключении к сети 220 вольт, если мы выбрали не ту обмотку или обмотка не рассчитана на напряжение 220 вольт. Максимальный ток, протекающий в этом случае по обмотке (при мощности лампы 40 ватт), не превысит 180 миллиампер. Это убережёт Вас и испытываемый трансформатор от возможных неприятностей.

И вообще, возьмите себе за правило, если Вы не уверены в правильности выбора сетевой обмотки, её коммутации, в установленных перемычках обмотки, то первое подключение к сети всегда производить с последовательно включённой лампой накаливания.

Соблюдая осторожность, подключаем собранную цепь к сети 220 вольт (у меня напряжение сети чуть больше, а точнее - 230 вольт).
Что видим? Лампа накаливания не горит.
Значит сетевая обмотка выбрана правильно и дальнейшее подключение трансформатора можно производить без лампы.
Подключаем трансформатор без лампы и измеряем ток холостого хода трансформатора.

Ток холостого хода (ХХ) трансформатора измеряется так; собирается аналогичная цепь, что мы собирали с лампой (рисовать уже не буду), только вместо лампы включается амперметр, который предназначен для измерения переменного тока (внимательно осмотрите свой прибор на наличие такого режима).
Амперметр сначала устанавливается на максимальный предел измерения, потом, если его много, амперметр можно перевести на более низкий предел измерения.
Соблюдая осторожность - подключаем к сети 220 вольт, лучше через разделительный трансформатор . Если трансформатор мощный, то щупы амперметра на момент включения трансформатора в сеть лучше закоротить или дополнительным выключателем, или просто закоротить между собой, так как пусковой ток первичной обмотки трансформатора превышает ток холостого хода в 100-150 раз и амперметр может выйти из строя. После того, как трансформатор включён в сеть - щупы амперметра разъединяются и измеряется ток.

Ток холостого хода трансформатора должен быть в идеале 3-8% от номинального тока трансформатора. Вполне считается нормальным и ток ХХ 5-10% от номинального. То есть если трансформатор с расчётной номинальной мощностью 100 ватт, ток потребления его первичной обмоткой будет 0,45 А, значит ток ХХ должен быть в идеале 22,5 мА (5% от номинала) и желательно, чтобы он не превышал 45 мА (10% от номинала).

Как видим, ток холостого хода чуть более 28 миллиампер, что вполне допустимо (ну может чуток завышен), так как на вид этот трансформатор мощностью 40-50 ватт.
Измеряем напряжения холостого хода вторичных обмоток. Получается на выводах 1-2-4 17,4 + 17,4 вольта, выводы 12-13 = 27,4 вольта, выводы 22-23 = 6,8 вольта (это при напряжении сети 230 вольт).
Дальше нам нужно определить возможности обмоток и их нагрузочные токи. Как это делается?
Если есть возможность и позволяет длина подходящих к контактам проводов обмоток, то лучше измерить диаметры проводов (грубо до 0,1 мм - штангенциркулем и точно микрометром), и по таблице , при средней плотности тока 3-4 А/мм.кв. - находим токи, которые способны выдать обмотки.
Если измерить диаметры проводов не представляется возможным, то поступаем следующим образом.
Нагружаем по очереди каждую из обмоток активной нагрузкой, в качестве которой может быть что угодно, например лампы накаливания различной мощности и напряжения (лампа накаливания мощностью 40 ватт на напряжение 220 вольт имеет активное сопротивление 90-100 Ом в холодном состоянии, лампа мощностью 150 ватт - 30 Ом), проволочные сопротивления (резисторы), нихромовые спирали от электро плиток, реостаты и т.д.
Нагружаем до тех пор, пока напряжение на обмотке не уменьшится на 10% относительно напряжения холостого хода.
Потом измеряем ток нагрузки.

Этот ток и будет являться максимальным током, который обмотка способна будет выдавать длительное время не перегреваясь.

Условно принята величина падения напряжения до 10% для постоянной (статической) нагрузки для того, чтобы не перегревался трансформатор. Вы вполне можете взять 15%, или даже 20%, в зависимости от характера нагрузки. Все эти расчёты приближённые. Если нагрузка постоянная (накал ламп например, зарядное устройство), то берётся меньшее значение, если нагрузка импульсная (динамическая), например УНЧ (за исключением режима "А"), то можно взять значение и больше, до 15-20%.

Я беру в расчёт статическую нагрузку, и у меня получилось; обмотка 1-2-4 ток нагрузки (при снижении напряжения обмотки на 10% относительно напряжения холостого хода) - 0,85 ампер (мощность около 27 ватт), обмотка 12-13 (на фото выше) ток нагрузки 0,19-0,2 ампера (5 ватт) и обмотка 22-23 - 0,5 ампер (3,25 ватт). Номинальная мощность трансформатора получается около 36 ватт (округляем до 40).

Да, ещё хочу рассказать о сопротивлении первичной обмотки.
Для маломощных трансформаторов оно может составлять десятки, или даже сотни Ом, а для мощных - единицы Ом.
Очень часто на форуме задают такие вопросы;
"Измерил мультиметром сопротивление первичной обмотки ТС250, а оно оказалось 5 Ом. Не мало ли оно для сети 220 вольт, я боюсь его включать в сеть. Подскажите - нормально ли оно?"

Так как все мультиметры измеряют сопротивление постоянному току (активное сопротивление), то волноваться не стоит, потому что для переменного тока частотой 50 герц эта обмотка будет иметь совсем другое сопротивление (индуктивное), которое будет зависеть от индуктивности обмотки и частоты переменного тока.
Если у Вас есть, чем измерить индуктивность, то Вы сами можете рассчитать сопротивление обмотки переменному току (индуктивное сопротивление).

Например;
Индуктивность первичной обмотки при измерении составила 6 Гн, идём сюда и вводим эти данные (индуктивность 6 Гн, частота тока сети 50 Гц), смотрим - получилось 1884,959 (округляем 1885), это и будет индуктивное сопротивление этой обмотки для частоты 50 Гц. Отсюда Вы можете вычислить и ток холостого хода этой обмотки для напряжения 220 вольт - 220/1885=0.116 А (116 миллиампер), да, сюда ещё можно добавить и активное сопротивление 5 Ом, то есть будет 1890.
Естественно, что для частоты 400 Гц будет совсем другое сопротивление этой обмотки.

Аналогично проверяются и другие трансформаторы.
На фото второго трансформатора видно, что выводы подпаяны к контактным лепесткам 1, 3, 4, 6, 7, 8, 10, 11, 12.
После прозвонки становится ясно, что у трансформатора 4 обмотки.
Первая на выводах 1 и 6 (24Ома), вторая 3-4 (83 Ома), третья 7-8 (11,5 Ом), четвёртая 10-11-12 с отводом от середины (0,1+0,1 Ом).

Причём хорошо видно, что обмотка 1 и 6 намотана первой (белые выводы), потом идёт обмотка 3-4 (чёрные выводы).
24 Ома активного сопротивления первичной обмотки вполне достаточно. У более мощных трансформаторов активное сопротивление обмотки доходит до единиц Ом.
Вторая обмотка 3-4 (83 Ома), возможно повышающая.
Здесь можно замерить диаметры проводов всех обмоток, кроме обмотки 3-4, выводы которой выполнены чёрным, многожильным, монтажным проводом.

Дальше подключаем трансформатор через лампу накаливания. Лампа не горит, трансформатор на вид мощностью 100-120, замеряем ток холостого хода, получается 53 миллиампера, что вполне допустимо.
Замеряем напряжения холостого хода обмоток. Получается 3-4 - 233 вольта, 7-8 - 79,5 вольта, и обмотка 10-11-12 по 3,4 вольта (6,8 со средним выводом). Обмотку 3-4 нагружаем до падения напряжения на 10% от напряжения холостого хода, и измеряем протекающий ток через нагрузку.

Максимальный ток нагрузки этой обмотки, как видно из фотографии - 0,24 ампера.
Токи других обмоток определяются из таблицы плотности тока, исходя из диаметра провода обмоток.
Обмотка 7-8 намотана проводом 0,4 и накальная проводом 1,08-1,1. Соответственно токи получаются 0,4-0,5 и 3,5-4,0 ампера. Номинальная мощность трансформатора получается около 100 ватт.

Остался ещё один трансформатор. У него контактная планка с 14-ю контактами, верх 1, 3, 5, 7, 9, 11, 13 и низ соответственно чётные. Он мог переключаться на различные напряжения сети (127,220.237) вполне возможно, что первичная обмотка имеет несколько отводов, или состоит из двух полу-обмоток с отводами.
Прозваниваем, и получается такая картина:
Выводы 1-2 = 2,5 Ом; 2-3 = 15,5 Ом (это одна обмотка с отводом); 4-5 = 16,4 Ом; 5-6 = 2,7 Ом (ещё одна обмотка с отводом); 7-8 = 1,4 Ома (3-я обмотка); 9-10 = 1,5 Ом (4-я обмотка);11-12 = 5 Ом (5-я обмотка) и 13-14 (6-я обмотка).
Подключаем к выводам 1 и 3 сеть с последовательно включённой лампой накаливания.

Лампа горит в половину накала. Измеряем напряжение на выводах трансформатора, оно равняется 131 вольт.
Значит не угадали и первичная обмотка здесь состоит из двух частей, и подключенная часть при напряжении 131 вольт начинает входить в насыщение (повышается ток холостого хода) и по этому нить лампы раскалилась.
Соединяем перемычкой выводы 3 и 4, то есть последовательно две обмотки и подключаем сеть (с лампой) к выводам 1 и 6.
Ура, лампа не горит. Измеряем ток холостого хода.

Ток холостого хода равен 34,5 миллиампер. Здесь скорее всего (так, как часть обмотки 2-3, и часть второй обмотки 4-5 имеют большее сопротивление, то эти части рассчитаны на 110 вольт, а части обмоток 1-2 и 5-6 по 17 вольт, то есть общее для одной части 1278 вольт) 220 вольт подключалось к выводам 2 и 5 с перемычкой на выводах 3 и 4 или наоборот. Но можно оставить и так, как мы подключили, то есть все части обмоток последовательно. Для трансформатора это только лучше.
Всё, сеть нашли, дальнейшие действия аналогичны описанным выше.

Ещё немного о стержневых трансформаторах. Например имеется такой (фото выше). Какие для них общие особенности?

У стержневых трансформаторов, как правило две симметричные катушки, и сетевая обмотка разделена на две катушки, то есть на одной катушке намотано витков на 110 (127) вольт, и на другой. Нумерация выводов одной катушки - аналогична другой, номера выводы на другой катушке помечаются (или условно помечаются) штрихом, т.е. 1", 2" и т.д.

Сетевая обмотка, как правило, мотается первой (ближе всех к сердечнику).

Сетевая обмотка может иметь отводы, или состоять из двух частей (например одна обмотка - выводы 1-2-3; или две части - выводы 1-2 и 3-4).

У стержневого трансформатора магнитный поток движется по сердечнику (по "кругу, эллипсу"), и направление магнитного потока одного стержня будет противоположно другому, поэтому для последовательного соединения двух половин обмоток, на разных катушках соединяют одноимённые контакты или начало с началом (конец с концом), т.е. 1 и 1", сеть подают на 2-2", или 2 и 2", сеть подают тогда на 1 и 1".

Для последовательного соединения обмоток, состоящих из двух частей на одной катушке - обмотки соединяют как обычно, начало с концом или конец с началом, (н-к или к-н), то есть вывод 2 и 3 (если, например имеются 2 обмотки с номерами выводов 1-2 и 3-4), так же и на другой катушке. Дальнейшее последовательное соединение получившихся двух полу-обмоток на разных катушках, смотри пунктом выше. (Пример такого соединения на схеме трансформатора ТС-40-1).

Для параллельного соединения обмоток (только для обмоток с одинаковым количеством витков ) на одной катушке соединение производится как обычно (н-н и к-к, или выводы 1-3 и 2-4 - если например имеются одинаковые обмотки с выводами 1-2 и 3-4). Для разных катушек соединение производится следующим образом, к-н- отвод и н-к- отвод, или соединяются выводы 1-2" и 2-1" - если, например имеются одинаковые обмотки с выводами 1-2 и 1"-2".

Ещё раз напоминаю о соблюдении техники безопасности, и лучше всего для экспериментов с напряжением 220 вольт иметь дома разделительный трансформатор (трансформатор с обмотками 220/220 вольт для гальванической развязки с промышленной сетью), который защитит от поражения током, при случайном прикосновении к оголённому концу провода.

Если возникнут какие то вопросы по статье, или найдёте в загашниках трансформатор (с подозрением, что он силовой), задавайте вопросы , поможем разобраться с его обмотками и подключением к сети.