Мультивибраторы на транзисторах. Светодиодная мигалка — мультивибратор Самая простая схема мультивибратора без резисторов

Знают все радиолюбители, а вот то, что он может работать и на 3 канала - не многие. Простая схема трёхфазного мультивибратора на трёх транзисторах при работе создает эффект бегущей дорожки из трёх источников света (светодиодов). Резисторы на 68 Ом возможно и не использовать, они только ограничивают ток светодиода. На фото вместо резисторов 68 Ом - два параллельно соединённые по 150 Ом, которые дали при таком соединении 75 Ом.

Электролитические конденсаторы 47 мкФ определяют частоту мигания светодиодов, чем выше их ёмкость - тем реже происходит переключение светодиодов, при уменьшение количества мкФ светодиоды мигают чаще. Если поставите конденсаторы большой ёмкости (200 мкФ и выше), то три светодиода будут просто гореть.

Возможно использование других транзисторов: BC547 , КТ3102 , КТ315.

Плата существует как формата.lay для , так и для программы с расширением.lyt . Первая спроектирована под транзисторы КТ315 , а вторая под BC547 (КТ3102 ). Скачать файлы .

Я использовал синие крупные светодиоды диаметром 10 мм. Если есть желание, можно впаять сразу два светодиода, соединённые последовательно, ток немного возрастёт, но совокупная яркость излучаемого света значительно увеличится.

Питание для схемы около 5 вольт, удобно применять 3-4 батарейки или аккумулятора типоразмером AA (пальчиковые). Если подключите к схеме источник питания с напряжением больше нужного, то частота мигания уменьшится. При слишком большом напряжение светодиоды будут просто гореть. Ток потребления мультивибратора весьма мал и колеблется в рамках 50-54 mA, у меня вышел 53,3 милиампер.

Ниже можно увидеть 3D модель собранной на печатной плате схемы (3D Visualization ). Длинна моей платы составила 3,9 см, а ширина 2,8 см (~1.5x1 inch).

Электронные генераторы: мультивибратор. Назначение, принцип действия, применение.

Мультивибраторы

Мультивибратор представляет собой релаксационный генератор колебаний почти прямоугольной формы. Он является двухкаскадным усилителем на резисторах с положительной обратной связью, в котором выход каждого каскада соединен со входом другого. Само название "мультивибратор" происходит от двух слов: "мульти" - много и "вибратор" - источник колебаний, поскольку колебания мультивибратора содержат большое число гармоник. Мультивибратор может работать в автоколебательном режиме, режиме синхронизации и ждущем режиме. В автоколебательном режиме мультивибратор работает как генератор с самовозбуждением, в режиме синхронизации на мультивибратор действует извне синхронизирующее напряжение, частота которого определяет частоту импульсов, ну а в ждущем режиме мультивибратор работает как генератор с внешним возбуждением.

Мультивибратор в автоколебательном режиме

На рисунке 1 показана наиболее распространенная схема мультивибратора на транзисторах с емкостными коллекторно-базовыми связями, на рисунке 2 - графики, поясняющие принцип его работы. Мультивибратор состоит из двух усилительных каскадов на резиках. Выход каждого каскада соединен со входом другого каскада через кондеры С1 и С2.


Рис. 1 - Мультивибратор на транзисторах с емкостными коллекторно-базовыми связями

Мультивибратор, у которого транзисторы идентичны, а параметры симметричных элементов одинаковы, называется симметричным. Обе части периода его колебаний равны и скважность равна 2. Если кто забыл, что такое скважность, напоминаю: скважность - это отношение периода повторения к длительности импульса Q=T и /t и. Величина, обратная скважности называется коэффициентом заполнения. Так вот, если имеются различия в параметрах, то мультивибратор будет несимметричным.

Мультивибратор в автоколебательном режиме имеет два состояния квазиравновесия, когда один из транзисторов находится в режиме насыщения, другой - в режиме отсечки и наоборот. Эти состояния не устойчивые. Переход схемы из одного состояния в другое происходит лавинообразно из-за глубокой ПОС.


Рис. 2 - Графики, поясняющие работу симметричного мультивибратора

Допустим, при включении питания транзистор VT1 открыт и насыщен током, проходящим через резик R3. Напряжение на его коллекторе минимально. Кондер С1 разряжается. Транзистор VT2 закрыт и кондер С2 заряжается. Напряжение на кондере С1 стремится к нулю, а потенциал на базе транзистора VT2 постепенно становится положительным и VT2 начинает открываться. Напряжение на его коллекторе уменьшается и кондер С2 начинает разряжаться, транзистор VT1 закрывается. Далее процесс повторяется до бесконечности.

Параеметры схемы должны быть следующими: R1=R4, R2=R3, C1=C2. Длительность импульсов определяется по формуле:

Период импульсов определяется:


Ну а чтобы определить частоту, надо единицу разделить на вот эту вот хренотень (см. чуть выше).

Выходные импульсы снимаются с коллектора одного из транзисторов, причем с какого именно - не важно. Другими словами, в схеме два выхода.

Улучшение формы выходных импульсов мультивибратора, снимаемых с коллектора транзистора, может быть достигнуто включением разделительных (отключающих) диодов в цепи коллекторов, как показано на рисунке 3. Через эти диоды параллельно коллекторным нагрузкам подключены дополнительные резики R д1 и R д2 .

Рис. 3 - Мультивибратор с улучшенной формой выходных импульсов

В этой схеме после закрывания одного из транзисторов и понижения потенциалла коллектора подключенный к его коллектору диод также закрывается, отключая кондер от коллекторной цепи. Заряд кондера происходит через дополнительный резик R д, а не через резик в коллекторной цепи, и потенциал коллектора запирающегося транзистора почти скачком становится равным E к. Максимальная длительность фронтов импульсов в коллекторных цепях определяется в основном частотными свойствами транзисторов.

Такая схема позволяет получить импульсы почти прямоугольной формы, но её недостатки заключаются в более низкой максимальной скважности и невозможностью плавной регулировки периода колебаний.

На рисунке 4 приведена схема быстродействующего мультивибратора, обеспечивающая высокую частоту автоколебаний.

Рис. 4 - Быстродействующий мультивибратор

В этой схеме резики R2, R4 подключены параллельно кондерам С1 и С2, а резики R1, R3 ,R4, R6 образуют делители напряжения, стабилизирующие потенциал базы открытого транзистора (при токе делителя, большем тока базы). При переключении мультивибратора ток базы насыщенного транзистора изменяется более резко, чем в ранее рассмотренных схемах, что сокращает время рассасывания зарядов в базе и ускоряет выход транзистора из насыщения.

Ждущий мультивибратор

Мультивибратор, работающий в автоколебательном режиме и не имеющий состояния устойчивого равновесия, можно превратить в мультивибратор, имеющий одно устойчивое положение и одно неустойчивое положение. Такие схемы называются ждущими мультивибраторами или одновибриторами, одноимпульсными мультивибраторами, релаксационными реле или кипп-реле. Перевод схемы из устойчивого состояния в неустойчивое происходит путем воздействия внешнего запускающего импульса. В неустойчивом положении схема находится в течение некоторого времени в зависимости от её параметров, а затем автоматически, скачком возвращается в первоначальное устойчивое состояние.

Для получения ждущего режима в мультивибраторе, схема которого была показана на рис. 1, надо выкинуть пару деталюшек и заменить их, как показано на рис. 5.

Рис. 5 - Ждущий мультивибратор

В исходном устойчивом состоянии транзистор VT1 закрыт. Когда на вход схемы приходит положительный запускающий импульс достаточной амплитуды, через транзистор начинает проходить коллекторный ток. Изменение напряжения на коллекторе транзистра VT1 передается через кондер С2 на базу транзистора VT2. Благодаря ПОС (через резик R4) нарастает лавинообразный процесс, приводящий к закрыванию транзистора VT2 и открыванию транзистора VT1. В этом состоянии неустойчивого равновесия схема находится до тех пор, пока кондер С2 не разрядится через резик R2 и проводящий транзистор VT1. После разряда кондера транзистор VT2 открывается, а VT1 закрывается и схема возвращается в исходное состояние.

Блокинг-генераторы

Блокинг-генератор представляет собой однокаскадный релаксационный генератор кратковременных импульсов с сильной индуктивной положительной обратной связью, создаваемой импульсным трансформатором. Вырабатываемые блокинг-генератором импульсы имеют большую крутизну фронта и среза и по форме близки к прямоугольным. Длительность импульсов может быть в пределах от нескольких десятков нс до нескольких сотен мкс. Обычно блокинг-генератор работает в режиме большой скважности, т. е. длительность импульсов много меньше периода их повторения. Скважность может быть от нескольких сотен до десятков тысяч. Транзистор, на котором собран блокинг-генератор, открывается только на время генерирования импульса, а остальное время закрыт. Поэтому при большой скважности время, в течении которого транзистор открыт, много меньше времени, в течении которого он закрыт. Тепловой режим транзистора зависит от средней мощности, рассеиваемой на коллекторе. Благодаря большой скважности в блокинг-генераторе можно получить очень большую мощность во время импульсов малой и средней мощности.

При большой скважности блокинг-генератор работает весьма экономично, так как транзистор потребляет энергию от источника питания только в течении небольшого времени формирования импульса. Так же, как и мультивибратор, блокинг-генератор может работать в автоколебательном, ждущем режиме и режиме синхронизации.

Автоколебательный режим

Блокинг-генераторы могут быть собраны на транзисторах, включенных по схеме с ОЭ или по схеме с ОБ. Схему с ОЭ применяют чаще, так как она позволяет получить лучшую форму генерируемых импульсов (меньшую длительность фронта), хотя схема с ОБ более стабильна по отношению к изменению параметров транзистора.

Схема блокинг-генератора показана на рис. 1.

Рис. 1 - Блокинг-генератор

Работу блокинг-генератора можно разделить на две стадии. В первой стадии, занимающей большую часть периода колебаний, транзистор закрыт, а во второй - транзистор открыт и происходит формирование импульса. Закрытое состояние транзистора в первой стадии поддерживается напряжением на кондере С1, заряженным током базы во время генерации предыдущего импульса. В первой стадии кондер медленно разряжается через большое сопротивление резика R1, создавая близкий к нулевому потенциал на базе транзистора VT1 и он остается закрытым.

Когда напряжение на базе достигнет порога открывания транзистора, он открывается и через коллекторную обмотку I трансформатора Т начинает протекать ток. При этом в базовой обмотке II индуктируется напряжение, полярность которого должна быть такой, чтобы оно создавало положительный потенциал на базе. Если обмотки I и II включены неправильно, то блокинг-генератор не будет генерировать. Значится, концы одной из обмоток, неважно какой, необходимо поменять местами.

Мигалка на светодиодах или как собрать симметричный мультивибратор своими руками. Схема симметричного мультивибратора обязательно изучается и собирается в кружках электроники. Схема мультивибратора одна из самых известных и часто применяемых в различных электронных конструкциях. Симметричный мультивибратор при работе генерирует колебания по форме приближающиеся к прямоугольной. Простота мультивибратора обусловлена его конструкцией — это всего два транзистора и несколько дополнительных элементов. Мастер предлагает вам собрать свою первую электронную схему мигалку на светодиодах. Что бы не быть разочарованным в случае неудачи, ниже представлена подробная пошаговая инструкция по сборке своими руками мультивибратора мигалки на светодиодах с фото и видео иллюстрациями.

Как собрать мигалку на светодиодах своими руками

Немного теории. Мультивибратор это по сути двухкаскадный усилитель на транзисторах VT1 и VT2 с цепью положительной обратной связи через электролитический конденсатор С2 между каскадами усиления на транзисторах VT2 и VT1. Такая обратная связь превращает схему в генератор. Название симметричный мультивибратор обусловлено одинаковыми значениями пар элементов R1=R2, R3=R4, C1=C2. При таких значениях элементов мультивибратор будет генерировать импульсы и паузы между импульсами равной длительности. Частота следования импульсов задается в большей степени значениями пар R1=R2 и C1=C2. Контролировать длительность импульсов и пауз можно будет по вспышкам светодиодов. При нарушении равенства пар элементов мультивибратор становится несимметричным. Несимметричность будет обусловлена прежде всего различием в длительности импульса и длительности паузы.

Мультивибратор собирается на двух транзисторах, кроме того потребуется четыре резистора, два электролитических конденсатора и два светодиода для индикации работы мультивибратора. Задача приобретения деталей и печатной платы решается легко. Вот ссылка на покупку готового набора деталей http://ali.pub/2bk9qh . Набор включает в себя все детали, добротную печатную плату размером 28 мм × 30 мм, схему, монтажную схему и спецификацию. Ошибок расположения деталей на рисунке печатной платы практически нет.

Состав набора деталей мультивибратора

Приступим к сборке схемы, для работы потребуется маломощный паяльник, флюс для пайки, припой, бокорезы и батареи питания. Схема простая, но ее надо собрать правильно и без ошибок.

  1. Ознакомьтесь с содержимым пакета. Расшифруйте по цветовому коду номиналы резисторов и установите их на плату.
  2. Припаяйте резисторы и откусите выступающие остатки электродов.
  3. Электролитические конденсаторы должны размещаться на плате определенным образом. В правильном размещении вам поможет монтажная схема и рисунок на плате. Электролитические конденсаторы имеют на корпусе маркировку отрицательного электрода, а положительный электрод имеет чуть большую длину. Расположение отрицательного электрода на плате находится в заштрихованной части обозначения конденсатора.
  4. Установите конденсаторы на плату и припаяйте их.
  5. Размещение транзисторов на плате строго по ключу.
  6. Светодиоды также имеют полярность электродов. Смотрите фото. Устанавливаем и припаиваем их. Старайтесь не перегревать эту деталь при пайке. Плюс светодиода LED2 находится ближе к резистору R4 (смотрите видео).

    Светодиодыы установлены на плату мультивибратора

  7. Припаяйте согласно полярности проводники питания и подайте напряжение от батарей. При напряжении питания 3 Вольта светодиоды включились вместе. После секундного разочарования, было подано напряжение от трех батарей и светодиоды начали попеременного мигать. Частота мультивибратора зависит от напряжения питания. Так как схема должна была устанавливаться в игрушку с питанием от 3 Вольт пришлось заменить резисторы R1 и R2 на резисторы номиналом 120 кОм, четкое попеременное мигание было достигнуто. Смотрите видео.

Мигалка на светодиодах — симметричный мультивибратор

Применение схемы симметричного мультивибратора весьма широко. Элементы схем мультивибратора найдутся в вычислительной технике, радиоизмерительной и медицинской аппаратуре.

Набор деталей для сборки мигалки на светодиодах можно приобрести по следующей ссылке http://ali.pub/2bk9qh . Если хотите серьезно попрактиковаться в пайке простых конструкций Мастер рекомендует приобрести комплект из 9 наборов, что здорово сэкономит ваши расходы на пересылку. Вот ссылка для покупки http://ali.pub/2bkb42 . Мастер собрал все наборы и они заработали. Успехов и роста навыков в пайке.

представляет собой генератор импульсов практически прямоугольной формы, созданный в виде усилительного элемента с цепью положительно-обратной связью. Существуют два типа мультивибраторов.

Первым типом являются автоколебательные мультивибраторы, которые не имеют устойчивого состояния. Различают два типа: симметричный – у него транзисторы одинаковы и также одинаковы параметры симметричных элементов. В результате этого две части периода колебаний равны между собой, а скважность равна двум. Если же параметры элементов не равны, то это уже будет несимметричный мультивибратор.

Второй тип это ждущие мультивибраторы, которые обладают состоянием устойчивого равновесия и нередко их именуют еще одновибратором. Применение мультивибратора в различных радиолюбительских устройствах довольно распространено.

Описание работы мультивибратора на транзисторах

Принцип работы проанализируем на примере следующей схемы.

Легко заметить, что она практически копирует принципиальную схему симметричного триггера. Различие только в том, что связи между блоками переключения, как прямая, так и обратная, осуществлены по переменному току, а не по постоянному. Это кардинально изменяет особенности устройства, так как в сравнении с симметричным триггером у схемы мультивибратора нет стабильных состояний равновесия, в которых он мог бы находиться продолжительное время.

Взамен этого имеются два состояния квазиустойчивого равновесия, благодаря чему устройство находится в каждом из них строго определенное время. Каждый такой промежуток времени определяется переходными процессами, происходящими в схеме. Функционирование устройства заключается к постоянной смене данных состояний, что сопровождается появлением на выходе напряжения, очень напоминающее по форме прямоугольное.

По сути своей симметричный мультивибратор представляет собой двухкаскадный усилитель, причем схема построена, так что выход первого каскада соединен с входом второго. Вследствие этого после подачи питания на схему, обязательно получается, так что один из открыт, а другой находится в закрытом состоянии.

Допустим, что транзистор VT1 открыт и находится в состоянии насыщения током, идущим через резистор R3. Транзистор VT2, как уже было сказано выше, закрыт. Теперь в схеме происходят процессы, связанные с перезарядом конденсаторов C1 и C2. Первоначально конденсатор C2 абсолютно разряжен и вслед за насыщением VT1 происходит постепенная зарядка его через резистор R4.

Поскольку конденсатор C2 шунтирует коллектор-эммитерный переход транзистора VT2 через эммитерный переход транзистора VT1, то скорость его заряда определяет скорость изменения напряжения на коллекторе VT2. После заряда C2 транзистор VT2 закрывается. Продолжительность этого процесса (длительность фронта напряжения коллектора) можно вычислить по формуле:

t1a = 2,3*R1*C1

Также в работе схемы протекает и второй процесс, связанный с разрядом ранее заряженного конденсатора C1. Его разряд происходит через транзистор VT1, резистор R2 и источник питания. По мере разряда конденсатора на базе VT1 появляется положительный потенциал, и он начинает открываться. Данный процесс заканчивается после полного разряда C1. Длительность этого процесса (импульса) равна:

t2a = 0,7*R2*C1

По прошествии времени t2a транзистор VT1 будет заперт, а транзистор VT2 будет в насыщении. После этого процесс повторится по аналогичной схеме и длительность интервалов следующих процессов можно рассчитать также по формулам:

t1b = 2,3*R4*C2 и t2b = 0,7*R3*C2

Для определения частоты колебаний мультивибратора справедливо следующее выражение:

f = 1/ (t2a+t2b)

Мультивибратор (от латинского много колеблю) - нелинейное устройство, преобразующее постоянное напряжение питания в энергию импульсов почти прямоугольной формы. В основе мультивибратора лежит усилитель с положительной обратной связью.

Различают мультивибраторы автоколебательные и ждущие. Рассмотрим первый тип.

На рис. 1 приведена обобщенная схема усилителя с обратными связями.

Схема содержит усилитель с комплексным коэффициентом усиления к=Ке-iк, цепь ООС с коэффициентом передачи m, и цепь ПОС с комплексным коэффициентом передачи В=е-i. Из теории генераторов известно, что для возникновения колебаний на какой-либо частоте необходимо что бы на ней выполнялось условие Вк>1. Импульсный периодический сигнал содержит совокупность частот, образующих линейчатый спектр (см.1-ю лекцию). Т.о. для генерации импульсов необходимо выполнения условия Вк>1не на одной частоте, а в широкой полосе частот. Причем, чем более короткий импульс и с более короткими фронтами сигнал требуется получить, для более широкой полосы частот требуется выполнения условия Вк>1. Приведенное условие распадается на два:

условие баланса амплитуд - модуль общего коэффициента передачи генератора должен превышать 1 в широком диапазоне частот - К>1;

условие баланса фаз - суммарный сдвиг фаз колебаний в замкнутом контуре генератора в том же диапазоне частот должен быть кратен 2 - к + =2n.

Качественно процесс скачкообразного роста напряжения происходит следующим образом. Пусть в некоторый момент времени в результате флюктуаций напряжение на входе генератора возросло на малую величину u. В результате выполнения обоих условий генерации на выходе устройства появится приращение напряжения: uвых=Вкuвх >uвх, которое передается на вход в фазе с исходным uвх. Соответственно это увеличение приведет к дальнейшему возрастанию выходного напряжения. Происходит лавинообразный процесс роста напряжения в широком диапазоне частот.

Задача построения практической схемы генератора импульсов сводится к подаче на вход широкополосного усилителя части выходного сигнала с разностью фаз =2. Поскольку один резистивный усилитель сдвигает фазу входного напряжения на 1800, то применяя два последовательно соединенных усилителя, можно удовлетворить условию баланса фаз. Условие баланса амплитуд будет выглядеть в этом случае следующим образом:

Одна из возможных схем, реализующий указанный метод, приведена на рис.2. Это схема автоколебательного мультивибратора с коллекторно-базовыми связями. В схеме используются два усилительных каскада. Выход одного усилителя связан со входом второго конденсатором С1, а выход последнего связан со входом первого - конденсатором С2.


Качественно работу мультивибратора рассмотрим с использованием временных диаграмм напряжений (эпюр), приведенных на рис. 3.

Пусть в момент времени t=t1 происходит переключение мультивибратора. Транзистор VT1 попадает в режим насыщения, а VT2 - в режим отсечки. С этого момента начинаются процессы перезарядки конденсаторов С1 и С2. До момента t1 конденсатор С2 был полностью разряжен, а С1 заряжен до напряжения питания Еп (полярность заряженных конденсаторов указана на рис.2). После отпирания VT1 начинается его зарядка от источника Еп через резистор Rк2 и базу отпертого транзистора VT1. Конденсатор заряжается практически до напряжения питания Еп с постоянной заряда

зар2 = С2Rк2

Поскольку С2 через открытый VT1 подсоединен параллельно VT2, то скорость его зарядки определяет скорость изменения выходного напряжения Uвых2.. Полагая процесс зарядки законченным когда Uвых2 = 0,9Uп, легко получить длительность

t2-t1= С2Rк2ln102,3С2Rк2

Одновременно зарядке С2 (начиная с момента t1) происходит перезарядка конденсатора С1. Его отрицательное напряжение, приложенное к базе VT2, поддерживает запертое состояние этого транзистора. Конденсатор С1 перезаряжается по цепи: Еп, резистор Rб2, С1, Э-К открытого транзистора VT1. корпус с постоянной времени

разр1 = С1Rб2

Так как Rб >>Rк, то и зар<<разр. Следовательно, С2 успевает зарядиться до Еп пока VT2 еще закрыт. Процесс перезарядки С1 заканчивается в момент времени t5, когда UC1=0 и начинает открываться VT2 (для простоты считаем, что VT2 открывается при Uбє=0). Можно показать, что длительность перезаряда С1 равна:

t3-t1 = 0,7C1Rб2

В момент времени t3 появляется коллекторный ток VT2, падает напряжение Uкэ2, что приводит к призакрыванию VT1 и, соответственно, к росту Uкэ1. Это приращение напряжение через С1 передается в базу VT2, что влечет дополнительное открытие VT2. Транзисторы переходят в активный режим, возникает лавинообразный процесс, в результате которого мультивибратор переходит в другое квазистационарное состояние: VT1 закрыт, VT2 - открыт. Длительность опрокидывания мультивибратора намного меньше всех других переходных процессов и ее можно считать равным нулю.

С момента t3 процессы в мультивибраторе пойдут аналогично описанному, следует лишь поменять местами индексы у элементов схемы.

Таким образом, длительность фронта импульса определяется процессами заряда конденсатора связи и численно равна:

Длительность нахождения мультивибратора в квазиустойчивом состоянии (длительность импульса и паузы) определяется процессом разряда конденсатора связи через базовый резистор и численно равна:

При симметричной схеме мультивибратора (Rк1 =Rк2 =Rк, Rб1 =Rб2 =Rб, С1=С2=С) длительность импульса равна длительности паузы, и период следования импульсов равен:

Т = и + п =1,4CRб

Сравнивая длительности импульса и фронта необходимо учесть, что Rб/Rк=h21э/s (h21э для современных транзисторов 100, а s2). Следовательно, длительность фронта всегда меньше длительности импульса.

Частота выходного напряжения симметричного мультивибратора не зависит от напряжения питания и определяется только параметрами схемы:

Для изменения длительности импульсов и периода их следования нужно варьировать величины Rб и С. Но возможности здесь невелики: пределы изменения Rб ограничены сбольшей стороны необходимостью сохранения открытого транзистора, с меньшей стороны - неглубокого насыщения. Изменять плавно величину С затруднительно даже в малых пределах.

Чтобы найти выход из затруднения обратимся к периоду времени t3-t1 на рис. 2. Из рисунка видно, что указанный интервал времени, а, следовательно, и длительность импульса можно регулировать изменяя наклон прямой разряда конденсатора. Этого можно добиться, подключая базовые резисторы не к источнику питания, а к дополнительному источнику напряжения Есм (см. рис. 4). Тогда конденсатор стремится перезарядиться не к Еп, а к Есм и крутизна экспоненты будет изменяться с изменением Есм.

Импульсы, генерируемые рассмотренными схемами, имеют большую длительность фронта. В ряде случаев эта величина становится неприемлемой. Для укорачивания ф в схему вводят отсекающие конденсаторы, как показано на рис.5. Конденсатор С2 заряжается в этой схеме не через Rз, а через Rд. Диод VD2, оставаясь закрытым, «отсекает» напряжение на С2 от выхода и напряжение на коллекторе возрастает практически одновременно с закрытием транзистора.

В мультивибраторах в качестве активного элемента можно использовать операционный усилитель. Автоколебательный мультивибратор на ОУ изображен на рис. 6.


ОУ охвачен двумя цепями ОС: положительной

и отрицательной

Хс/(Хс+R) = 1/(1+wRC).

Пусть генератор был включен в момент t0. На инвертирующем входе напряжение равно нулю, на неинвертирующем - равновероятно положительное или отрицательное. Для определенности возьмем положительное. За счет ПОС на выходе установится максимально возможное напряжение - Uвых m. Время установления этого выходного напряжения определяется частотными свойствами ОУ и можно положить его равным нулю. Начиная с момента t0 конденсатор С будет заряжаться с постоянной времени =RC. До момента времени t1 Uд = U+ - U- >0, и на выходе ОУ удерживается положительное Uвыхm. При t=t1 , когда Uд = U+ - U- = 0 выходное напряжение усилителя изменит свою полярность на - Uвых m. После момента t1 емкость С перезаряжается, стремясь к уровню - Uвых m. До момента t2 Uд = U+ - U- < 0, что обеспечивает квазиравновесное состояние системы, но уже с отрицательным выходным напряжением. Т.о. изменение знака Uвых происходит в моменты уравнивания входных напряжений на двух входах ОУ. Длительность квазиравновесного состояния системы определяется постоянной времени =RC, и период следования импульсов будет равен:

Т=2RCln(1+2R2/R1).

Мультивибратор, приведенный на рис.6 называется симметричным, т.к. времена положительного и отрицательного выходных напряжений равны.

Для получения несимметричного мультивибратора следует резистор в ООС заменить на схему, как показано на рис. 7. Разная длительность положительного и отрицательного импульсов обеспечена разными постоянными времени перезаряда емкостей:

R"C, - = R”C.

Мультивибратор на ОУ легко превратить в одновибратор или ждущий мультивибратор. Во-первых, в цепи ООС параллельно С подсоединим диод VD1, как показано на рис.8. Благодаря диоду схема имеет одно устойчивое состояние, когда напряжение на выходе отрицательно. Действительно, т.к. Uвых = - Uвых m, то диод открыт и напряжение на инвертирующем входе примерно равно нулю. В то время как напряжение на неинвертирующем входе равно

U+ =- Uвых m R2/(R1+R2)

и сохраняется устойчивое состояние схемы. Для генерации одного импульса в схему следует добавить цепь запуска, состоящую из диодаVD2, С1 и R3. Диод VD2 поддерживается в закрытом состоянии и может открыться только положительным входным импульсом, пришедшим на вход в момент времени t0. С открытием диода меняется знак и схема переходит в состояние с положительным напряжением на выходе. Uвых = Uвых m. После этого конденсатор С1 начинает заряжаться с постоянной времени =RC. В момент времени t1 напряжения на входя сравниваются. U- = U+ = Uвых m R2/(R1+R2) и =0. В следующий момент дифференциальный сигнал становится отрицательным и схема возвращается в устойчивое состояние. Эпюры приведены на рис. 9.

Применяются схемы ждущих мультивибраторов на дискретных и логических элементах.

Схема рассматриваемого мультивибратора аналогична рассмотренной ранее.