Китайский частотомер на pic16f628a описание. Частотомер на PIC16F628

Этот простой и удобный частотомер может измерять частоты FM диапазона и имеет автономное питание. Большинство аналогичных устройств имеет ЖК дисплеи со встроенным контроллером, что увеличивает общий ток потребления прибора. Также, многие высокочастотные частотомеры используют микросхемы с большим током потребления. Данное же устройство построено на современных экономичных микросхемак, что позволяет питать его от одной батарейки размера АА.

Характеристики частотмера

  • Диапазон частот: 1Гц - 150MГц
  • Диапазон амплитуд входного сигнала: 250mV - 5V
  • Разрешение: до 5 знаков
  • Точность: 4 знака
  • Время измерения: 0.1 сек или 1сек; автоматический выбор
  • Полностью автоматическая работа
  • Работает от одной батарейки AA; потребляемый ток < 15mA

О точности измерений

В частотомере использован кварц на частоту f 0 =100KГц и допуском Δf/f 0 = ±30ppm. Это означает, что реальная частота лежит в диапазоне 100KГц·(1 ± 3·10 -5). То есть максимальное отклонение от 100KГц составляет 3Гц. Как это влияет на точность измерений?

Частотомер считает количество периодов, прошедших за интервал 0.1 сек. Таким образом, точность определяется точностью измерения этого интервала. В этом частотомере этот интервал устанавливается как скважность ШИМ модуля контроллера. Формула для скважности такова: (CCPR1L:CCP1CON<5:4>)·T osc ·(TMR2 prescale value) = 625·T osc ·16, гдеT osc = 1/f 0 = 10 -5 сек. Приводя к точности кварца, получаем разброс: 10 4 ·10 -5 (1± 3·10 -5)= 0.1± 3·10 -6 сек. Другими словами, точность отсчета временных интервалов зависит от точности кварцевого резонатора.

Возьмем крайний случай - временной интервал равен 0.1+3·10 -6 сек. Пусть входная частота равна N герц (=периодов в секунду). Тогда измеренное значение будет N·(0.1+3·10 -6) = N/10 + (N/10)·3·10 -5 . В 0.1 секундном мы получаем значение частоты N/10 периодов, поэтому разница между измеренным и реальным значением N/10 будет (N/10)·3·10 -5 . Для частот больше, чем 333 KГц (3.33·10 5 Гц) разница превышает 1, так что для этих частот наш счетчик будет показывать неправильное значение N/10. Важным следствием этих соображений является то, что можно гарантировать только 4 старших разряда измеренной частоты N/10, иногда 5 разрядов.

Расчеты показывают, что при использовании кварцев с допуском несколько десятков ppm невозможно гарантировать точность в 6 или более знаков. А так как мы не можем гарантировать точность младших разрядов, то и нет смысла их отображать. Поэтому в частотомере отображается только 5 старших разрядов частоты, игнорируя остальные разряды.

Но на точность измерений влияет не только точность кварца, но и эффект его старения и рабочая температура. Однако, при температурах 10°C - 40°C влияние температуры на общую точность составляет не более ±10ppm, так что мы все равно можем гарантировать 4 - 5 ти значную точность.

Форматирование вывода

На индикаторе, используемом в частотомере есть только восемь 7-сегментных символов, поэтому применена специальная схема отображения диапазонов частот. Схема показана в таблице ниже. Незначащие нули не отображаются и показаны серым цветом. Диапазон отображается справа в экспоненциальной системе. Где символ E представляет 10 а число - степень 10ти.

Индикация Диапазон измерений Время счета
0. 0. 0. 0. 1 0. E 0 0 - 9 Гц 1 сек
0. 0. 0. 1 2 0. E 0 10 - 99 Гц 1 сек
0. 0. 1 2 3 0. E 0 100 - 999 Гц 1 сек
0. 1. 2 3 4 0. E 3 1 - 9.999 KГц 1 сек
1 2. 3 4 5 0. E 3 10 - 99.999 KГц 1 сек
1 2 3. 4 5 0. E 3 100 - 999.99 KГц 0.1 сек
1. 2 3 4 5 0. E 6 1 - 9.9999 MГц 0.1 сек
1 2. 3 4 5 0. E 6 10 - 99.999 MГц 0.1 сек
1 2 3. 4 5 0. E 6 100 - 150 MГц 0.1 сек

Измеренная частота представлена целым числом с 1 до 8 цифр. Значения, имеющие более 5 цифр округляются до ближайшего целого цначения, имеющего 5 ненулевых цифр в старших разрядах. Например, значение 12,345,678 округляется до 12,346,000 (на дисплее 12.346 E6), а 12,345,456 округляется до 12,345,000 (на дисплее 12.345 E6).

Железо

На входе схемы стоит предварительный усилитель, построенный на высокоскоростном компараторе LT1715. Согласно даташиту, он может работать на 150MГц. Входы второго компаратора, находящегося в корпусе микросхемы соединены с землей и шиной +5V для предотвращения его срабатывания и влияния на работающий компаратор. Компаратор - самое медленное устройство в схеме и он определяет верхнюю границу измерений. Резисторы по 10K сдвигают уровень на входах компаратора приблизительно до 2V. Резистор на 100 Ом добавлен для небольшого увеличения напряжения на инвертирующем входе. Поэтому в спокойном состоянии на выходе всегда 0. Разница во входных напряжениях составляет около 110мВ и определяет чувствительность предусилителя. Входное напряжение для гарантированной работы должно быть 150 мВ. Резистор 10K на выходе компаратора необязателен.

Выход компаратора соединен с 4-битным двоичным асинхронным счетчиком SN74LV161A с макимальной рабочей частотой 220MГц при питании от 5 В. Счетчик использован как предделитель для таймера TMR1. Он делит входную частоту на 16, поэтому на вход контроллера попадает максимум 10MГц, что удовлетворяет требованиям минимального периода в 60 нсек, требуемых для работы таймера TMR1 в асинхронном режиме. Все 4 выхода счетчика соединены с контроллером и на них образуются 4 старших бита измеряемых импульсов.

Сердце частотомера - контроллер PIC16F648A (можно использовать PIC16F628A).

Контроллер PCF8562 управляет ЖК дисплеем VM-838. На плате микросхема контроллера дисплея расположена под ЖКИ.

Напряжение питания 5 В получается с помощью DC/DC преобразователя NCP1400A. Он обеспечивает 5 вольт от одной батарейки AA. Ток потребления после преобразователя около 10 мA в покое, 9 мA из которых потребляется входным компаратором. Однако ток потребления от самой батарейки будет в 5 - 7 раз больше. Максимальный измеренный ток потребления составляет 70 мА, а средний - 40 мА. От одной батарейки АА емкостью 2000 мА·Ч частотомер может работать около 40 часов.

Прибор собран на одной стороне двусторонней печатной платы, но имеет несколько перемычек на обратной стороне. Медь на другой стороне использыется как дополнительный экран. Обратная сторона имеет олько 4 компонента: входной BNC разъем, держатель батарейки AA, 4 металлические стойки, и выключатель питания AS12AH. Плата разработана под SMD резисторы и конденсаторы размера 0603, но размер 0805 тоже можно использовать. На плате есть 3 площадки, соединенные с RA0, RA1 и RA5, которые можно использовать, например, для подключения частотомера к компьютеру.

Микроконтроллер должен быть запрограммирован либо во внешнем программаторе либо на плате, но до припайки счетчика SN74LV161A, так как счетчик блокирует выводы программирования контроллера.

Некоторые ошибки разработки...

Держатель батарейки, выключатель питания и входной разъем смонтированы очень билзко друг к другу, поэтому держатель батарейки пришлось немного подточить.

Также из-за тяжелой батарейки плата не очень устойчива на столе и при подсоединенном кабеле норовит перевернуться из-за кручения кабеля.

Несмотря на то, что индикация довольно проста, она все равно трудна для понимания.

Некоторое время назад я сделал аудио-генератор с частотомером, который работал очень хорошо, но я его продал, и теперь я делаю новый. Частотомер в предыдущей конструкции был сделан на микросхемах КМОП логики, но поскольку на данный момент у меня есть программатор PIC микроконтроллеров — частотомер построен именно на микроконтроллере.

Как обычно идею для будущей конструкции я искал в интернете. Оригинальная идея пришла от этого проекта: Частотомер на PIC16F628A и ЖК индикаторе . Как вы можете заметить – схема очень простая и в то же время элегантная. Но я хотел использовать 7-сегментный светодиодный дисплей, а не жидкокристаллический, так что я нашел еще один интересный проект: Простой 100MHz счетчик частоты , в котором применен 6-разрядный светодиодный дисплей.

Описание частотомера

Конечно же, объединение двух проектов в один не простая задача. Прежде всего, я хотел чтобы это был частотомер на микроконтроллере, и не имел дополнительных микросхем. Помимо этого я выбрал 16F628A, и потому один из выводов (порта RA5) может быть использованы только в качестве входа.

Для мультиплексного управление 6 цифрами 7-сегментного дисплея требуется 7 + 6 = 13 выходов. Микроконтроллер16F628A имеет 16 выводов, два из которых используются для кварцевого генератора, один для входного сигнала и еще один может быть использован только для входа. Так что у нас остается только 12 свободных выводов. Решение — управление одним из общих катодов с помощью транзистора, который открывается, в момент, когда все другие цифры выключены.

В схеме частотомера применено два 3-разрядных 7-сегментных дисплея с общим катодом типа BC56-12SRWA . Цифры 2..5 включаются, когда соответствующие выводы устанавливаются на низком уровне. Когда на всех этих выводах находится высокий уровень, транзистор Q1 открывается и загорается первая цифра. Ток потребления для каждого сегмента составляет около 6-7mA.

Следует отметить, что выводы, связанные с общими катодами теоретически могут потреблять до 50 мА, если все сегменты светятся. Это, конечно же, немного выше характеристик микроконтроллера. Но так как каждая цифра включается на очень короткое время, то это безопасно. Вся схема частотомера потребляет в среднем около 30-40 мА.

Микроконтроллер тактируется от внутреннего 4 МГц генератора. Таймер1 использует внешний кварцевый генератор с частотой 32768Hz для установки односекундного интервала. Timer0 используется для подсчета входного сигнал на выводе RA4. И, наконец, Таймер2 используется для обновлений цифры. Частотомер может измерять частоту от 920 до 930 кГц, что для любительских целей вполне достаточно. В качестве источника питания используется стабилизатор напряжения 78L05.

(скачено: 1 182)

Частотомер на PIC16F628

Измеритель частоты - очень востребованное устройство. Известные схемы частотомеров на счётчиках весьма громоздки, в то время, как подобное устройство можно сделать весьма компактным и экономичным, применив микроконтроллер и ЖК-дисплей.

Предлагаемая схема частотомера на микроконтроллере PIC16F628A - одна из самых простых, с учётом того, что заявленные параметры весьма впечатляют: диапазон измеряемых частот от 1Гц до 60МГц.


Как сообщает автор, прошивка была переделана с другого микроконтроллера на PIC16F628. Однако, мало кому удалось добиться работы частотомера с оригинальной прошивкой. При её исследовании стало понятно, что причина кроется в порту RB6, что было исправлено, и новая прошивка работает отлично.
нажмите для увеличения):


Прошивка микроконтроллера PIC16F628A от Дмитрия Мухамеджанова: frequency.hex
Для программирования микроконтроллера можно использовать универсальный программатор .

Мы упростили входную часть частотомера, это изменение отмечено на схеме красным цветом. Оригинальная часть на схеме также сохранена.

При монтаже устройства в корпус удобно использовать плоский кабель для подключения частотомера к ЖК-дисплею. Такой кабель можно изготовить самостоятельно. Для изготовления берётся отрезок шлейфа FDD или HDD нужной длины, концы проводов зачищаются и залуживаются, к ним припаивается подходящий разъём. Здесь можно использовать не только разъёмы предназначенные для пайки на кабель, но и для установки на плату: их легко паять.

Место пайки шлейфа к разъёму наиболее сильно подвержено механическим воздействиям, поэтому его нужно защитить от сгибаний и повреждений. Для этого достаточно любого густого клея.

  • 28.09.2014

    Данный приемник работает в диапазоне 64-75 МГц и имеет реальную чувствительность 6 мкВ, выходную мощность 4 Вт, диапазон ЗЧ — 70…10000Гц, КНИ не более 1 %. При этих параметрах приемник имеет размеры 60*70*25 мм. Приемный тракт собран на КС1066ХА1(К174ХА42) по стандартной схеме. Антенна — провод длиной около метра, сигнал от …

  • 29.09.2014

    Схема выполнена на двух микросхемах ТВА1208. В основе лежит схема трансивера, напечатанная в Л,1, но этот тракт работает с промежуточной частотой 500 кГц, что, конечно несколько снижает eгo характеристики, но позволяет использовать готовый, нacтpoeнный на заводе электромеханический фильтр. Микросхемы ТВА1208 предназначены для работы в тракте второй ПЧ3 телевизоров, В них …

  • 20.09.2014

    Классификация магнитных материалов Магнитные материалы находят самое широкое распространение в электротехнике, без них в настоящее время немыслимы электрические машины, трансформаторы, электроизмерительные приборы. В зависимости от применения к магнитным материалам предъявляются различные, подчас противоположные, требования. По признаку применения магнитные материалы классифицируются на две большие группы: магнитомягкие магнитотвердые Рассмотрим кратко их характеристики. …

  • 10.12.2017

    На рисунке показана схема простого высоко чувствительного акустического выключателя, который управляет нагрузкой при помощи реле. В схеме используется электретный микрофон, при использовании ECM микрофона необходимо использовать резистор R1 сопротивление от 2,2 кОм до 10 кОм. Первые два транзистора представляют собой предварительный микрофонный усилитель, R4 С7 в схеме устраняют нестабильность усилителя. …

  • 28.09.2014

    Данный приемник работает в диапазоне 64-75 МГц и имеет реальную чувствительность 6 мкВ, выходную мощность 4 Вт, диапазон ЗЧ — 70…10000Гц, КНИ не более 1 %. При этих параметрах приемник имеет размеры 60*70*25 мм. Приемный тракт собран на КС1066ХА1(К174ХА42) по стандартной схеме. Антенна — провод длиной около метра, сигнал от …

  • 29.09.2014

    Схема выполнена на двух микросхемах ТВА1208. В основе лежит схема трансивера, напечатанная в Л,1, но этот тракт работает с промежуточной частотой 500 кГц, что, конечно несколько снижает eгo характеристики, но позволяет использовать готовый, нacтpoeнный на заводе электромеханический фильтр. Микросхемы ТВА1208 предназначены для работы в тракте второй ПЧ3 телевизоров, В них …

  • 20.09.2014

    Классификация магнитных материалов Магнитные материалы находят самое широкое распространение в электротехнике, без них в настоящее время немыслимы электрические машины, трансформаторы, электроизмерительные приборы. В зависимости от применения к магнитным материалам предъявляются различные, подчас противоположные, требования. По признаку применения магнитные материалы классифицируются на две большие группы: магнитомягкие магнитотвердые Рассмотрим кратко их характеристики. …

  • 10.12.2017

    На рисунке показана схема простого высоко чувствительного акустического выключателя, который управляет нагрузкой при помощи реле. В схеме используется электретный микрофон, при использовании ECM микрофона необходимо использовать резистор R1 сопротивление от 2,2 кОм до 10 кОм. Первые два транзистора представляют собой предварительный микрофонный усилитель, R4 С7 в схеме устраняют нестабильность усилителя. …