Как сделать радиоуправляемую машину самостоятельно? Как сделать радиоуправляемую машинку? Как сделать радиоуправление.

Эта статья - рассказ моделиста про изготовление самодельной радиоуправляемой модели полноприводного автомобиля Range Rover из пластиковой модели. В ней раскрыты нюансы изготовления приводов мостов, установки электроники и многие другие нюансы.

Итак, решил сделать своими руками модель автомобиля!

Купил в магазине обычную стендовую модель Range Rovera. Цена данной модели 1500 рублей, в общем то дороговато, но модель стоит того! Изначально думал делать хаммер, но эта модель на много больше подходит по дизайну.

Электроника у меня была, ну некоторые запчасти я взял от трофийника под названием "кошка" который давно мне был не нужен и разобран на запчасти!

Конечно, можно было взять и другие сборные модели за основу, но хотелось именно такой джип для бездорожья.

Началось все с мостов и дифференциалов которые я делал из медных труб и паял обычным 100w паяльником. Дифференциалы тут обычные, шестерня пластиковая, тяги и кости привода железные от трофийника.

Такие трубки можно купить в любом строительном магазине.


Шестерню дифференциала взял с принтера обычного. Он давно мне был не нужен и вот решил,что ему пора на покой.

Получилось все довольно надежно, но паяльником довольно не удобно работать!

После того как я сделал дифференциалы надо было их чем-то закрыть, закрыл я их крышечками из под таблеток.

И покрасил обычной автоэмалью. Получилось красиво, хотя навряд ли трофийнику нужна красота.

Затем надо было сделать рулевые тяги и поставить мосты на раму рама была в комплекте и на мое удивление она оказалась железной, а не пластмассовой.



Сделать это было довольно не просто так как масштаб деталей весьма небольшой и паять тут не получалось, пришлось болтами прикручивать. Рулевые тяги я взял от того же старого трофийника который я разобрал.


Все детали дифференциалов на подшипниках.Так как я делал модель на долгое время.

Так же заказал редуктор с понижающей передачей, передача будет включаться микросервомашинкой с пульта.

Ну в общем дальше я установил пластиковое днище, вырезал в нем отверстие, установил редуктор, карданые валы, редуктор самодельный, двигатель обычный коллекторный для такой маленькой модели нету смысла ставить бк да и скорость мне не важна.

Двигатель от вертолета, но в редукторе он довольно мощный.

Самое главное модель едет не рывками,а плавно без задержки редуктор было сделать не просто но деталей у меня завались главное смекалка.

Редуктор прикрутил к днищу держался он отлично, а вот чтобы прикрепить днище к раме пришлось повозиться.


Дальше установил электронику, амортизаторы,аккамулятор. Сначала я поставил электронику слабоватую да и регулятор и приемник были единым целым но затем я поставил все отдельно и электроника было помощнее.



Ну и наконец покраска, установка всех основных узлов, декали, фары ну и другое. Красил все обычной краской для пластмассы в 4 слоя затем крылья красил коричневый и шкурил детали чтобы предать потертый и изношенный вид.

Кузов модели и цвет полностью оригинальны, цвет нашел в интернете и фото настоящей машины все делал по оригиналу. Такая комбинация цветов существует на реальной машине и в такой цвет их красили на заводе.

Ну и вот заключительные фото.Видео с испытанием добавлю чуть позже, а модель получилась весьма проходимой, скорость составила 18 км\ч, но я делал ее не для скорости. В общем я доволен своей работой, а оценивать ее вам.


Машинка не большого размера масштаб 1к24 в размере и есть весь смысл задумки я хотел себе мини трофийника.



Модель не боится влаги! Герметил все сам просто покрыл электронику лаком, очень надежно ни какая влага не страшна.

Сервомашинка микро парк от самолета на 3,5 кг.





Аккумулятора хватает на 25 минут катания но я буду ставить более мощную электронику и аккумулятор, т.к этой не вполне достаточно.



Даже бамперы такие же как и на оригинале. И крепления на них теже. Привод на ней не 50на50%,а60на40%.

В общем Range Rover получился в деревенском стиле я даже и не думал,что получится так качественно покрасить т.к красить толком не умею, хотя ни чего трудного нет!


Забыл добавить для красоты еще установил каркас безопасности и полноценую запаску. Запаска и каркас были в комплекте с набором.

Еще про радиоуправляемые модели :

Мишаня комментирует:

Расскажи а как устроен полный привод, внутри моста что крому раздатки находиться? Там должен быть поворотный кулак ведь.

Вряд ли кто-то станет отрицать тот факт, что машинка на радиоуправлении — это наиболее интересный и уместный подарок для ребенка и многих взрослых мужчин. Но нередко случается так, что даже дорогостоящие модели оказываются ненадежными и показывают малую скорость. И даже в этом случае имеется решение. В этой статье мы рассмотрим способы, как сделать радиоуправляемую машинку, чтобы сполна насладиться управлением гоночной машиной по спланированной вами траектории.

Как собирать машинку на радиоуправлении?

Итак, для самостоятельного сбора радиоуправляемой машинки вам понадобятся следующие элементы:

  • модель абсолютно любого автомобиля, можете использовать и самую простую, производство любое — от китайского до отечественного, от американского и до европейского;
  • ВАЗовские соленоиды для открывания дверей, аккумулятор на 12 Вольт;
  • аппаратура радиоуправления — АРУ, но не путайте с Автоматической регулировкой усиления, потому как аббревиатура абсолютно одинаковая;
  • аккумуляторы вместе с зарядными устройствами;
  • радиатор;
  • электроизмерительные агрегаты;
  • паяльник вместе с припоем, а также слесарный инструмент;
  • кусок резины, который необходим для того, чтобы усилить бампера.

Пример сборки радиоуправляемой машинки

Ну а теперь перейдем непосредственно к схеме, иными словами к процессу создания высококачественной модели РУ-машинки:

  1. В самом начале соберите подвеску — именно поэтому нам и понадобилась базовая моделька, а также аккумулятор 12 В.
  2. После этого возьмите ВАЗовские соленоиды, пластмассовые шестеренки и соберите редуктор.
  3. На корпусе и шпильках нарежьте резьбу таким образом, чтобы иметь возможность навесить соленоиды и шестеренки.
  4. Теперь подключите редуктор к питанию, обязательно проверьте. Если все в порядке с его функционалом, установите сам редуктор непосредственно в машину.
  5. Установите радиатор для того, чтобы защиты схемы от процесса перегрева. Пластину радиатора, кстати, можете достаточно надежно закрепить с помощью болтов.
  6. После того, как вы установите радиатор, установите микросхемы радиоуправления и силового драйвера.
  7. После установки микросхем полностью соберите корпус вашего автомобиля.

Теперь смело можете приступать к тестовым заездам автомобиля.

Итак, вы имеете в своем арсенале радиоуправляемую машинку. Что необходимо сделать для того, чтобы она стала более надежной и маневренной?

Не стоит перегружать модель лишними системами и деталями. Все звуковые сигналы, фары дальнего, ближнего света, открывающиеся дверцы — это все, само-собой, выглядит достаточно красиво, правдоподобно. Создание машины на радиоуправлении — процесс и без того достаточно непростой. Еще больше его усложнять не стоит, потому как это может весьма негативно сказаться на основных ходовых показателях вашей модели.

Самое важное, на чем необходимо сконцентрироваться — это изготовить качественную подвеску, обеспечить прекрасную передачу сигнала. Ну а для улучшения маневренности, оптимизации скоростных показателей вам поможет доводка системы в процессе тестовых заездов.

Важно! Даже самая интересная радиоуправляемая машинка не может быть единственным увлечением ребенка на долгое время. Чтобы он не скучал и с интересом познавал все новое, а вы меньше тратили свои нервы, исправляя последствия проказ маленького крохи, воспользуйтесь подборкой наших интересных идей:

Видеоматериал

Теперь вы можете сделать радиоуправляемую машинку и наслаждаться игрушкой столько времени, сколько у вас будет оставаться азарт, ведь это столь увлекательно.

Многие хотели собрать простую схему радиоуправления, но чтоб была многофункциональна и на достаточно большое расстояние. Я все-таки эту схему собрал, потратив на неё почти месяц. На платах дорожки рисовал от руки, так как принтер не пропечатывает такие тонкие. На фотографии приемника светодиоды с не подрезанными выводами - припаял их только для демонстрации работы радиоуправления. В дальнейшем их отпаяю и соберу радиоуправляемый самолет.

Схема аппаратуры радиоуправления состоит всего из двух микросхем: трансивера MRF49XA и микроконтроллера PIC16F628A. Детали в принципе доступные, но для меня проблемой был трансивер, пришлось через интернет заказывать. и платой качайте здесь. Подробнеее об устройстве:

MRF49XA - малогабаритный трансивер, имеющий возможность работать в трех частотных диапазонах.
- Низкочастотный диапазон: 430,24 - 439,75 Mгц (шаг 2,5 кГц).
- Высокочастотный диапазон А: 860,48 - 879,51 МГц (шаг 5 кГц).
- Высокочастотный диапазон Б: 900,72 - 929,27 МГц (шаг 7,5 кГц).
Границы диапазонов указаны при условии применения опорного кварца частотой 10 МГц.

Принципиальная схема передатчика:

В схеме TX довольно мало деталей. И она очень стабильная, более того даже не требует настройки, работает сразу после сборки. Дистанция (согласно источнику) около 200 метров.

Теперь к приемнику. Блок RX выполнен по аналогичной схеме, различия только в светодиодах, прошивках и кнопках. Параметры 10-ти командного блока радиоуправления:

Передатчик:
Мощность - 10 мВт
Напряжение питания 2,2 - 3,8 В (согласно даташиту на м/с, на практике нормально работает до 5 вольт).
Ток, потребляемый в режиме передачи - 25 мА.
Ток покоя - 25 мкА.
Скорость данных - 1кбит/сек.
Всегда передается целое количество пакетов данных.
Модуляция - FSK.
Помехоустойчивое кодирование, передача контрольной суммы.

Приемник:
Чувствительность - 0,7 мкВ.
Напряжение питания 2,2 - 3,8 В (согласно даташиту на микросхему, на практике нормально работает до 5 вольт).
Постоянный потребляемый ток - 12 мА.
Скорость данных до 2 кбит/сек. Ограничена программно.
Модуляция - FSK.
Помехоустойчивое кодирование, подсчет контрольной суммы при приеме.

Преимущества данной схемы

Возможность нажатия в любой комбинации любого количества кнопок передатчика одновременно. Приемник при этом отобразит светодиодами нажатые кнопки в реальном режиме. Говоря проще, пока нажата кнопка (или комбинация кнопок) на передающей части, на приемной части горит, соответствующий светодиод (или комбинация светодиодов).

Во время подачи питания на приемник и передатчик, они уходят в тест режим на 3 секунды. В это время ничего не работает, по истечению 3-х секунд обе схемы готовы к работе.

Кнопка (или комбинация кнопок) отпускается - соответсвующие светодиоды сразу же гаснут. Идеально подходит для радиоуправления различными игрушками - катерами, самолётами, автомобилями. Либо можно использовать, как блок дистанционного управления различными исполнительными устройствами на производстве.

На печатной плате передатчика кнопки расположены в один ряд, но я решил собрать что-то наподобии пульта на отдельной плате.

Питаются оба модуля от аккумуляторов 3,7В. У приемника, который потребляет заметно меньше тока, аккумулятор от электронной сигареты, у передатчика - от моего любимого телефона)) Схему, найденную на сайте вртп , собрал и испытал: [)еНиС

Обсудить статью РАДИОУПРАВЛЕНИЕ НА МИКРОКОНТРОЛЛЕРЕ

В этой статье, вы увидите как сделать радиоуправление на 10 команд своими руками. Дальность действия данного устройства 200 метров на земле и более 400м в воздухе.



Схема была взята на сайте vrtp.ru
Передатчик

Приемник


Нажатие кнопок может производиться в любой последовательности, хоть все сразу все работает стабильно. С помощью его можно управлять разными нагрузками: воротами гаража, светом, моделями самолетов, автомобилей и так далее… В общем чем угодно, все зависит от вашей фантазии.

Для работы нам потребуются список деталей:
1) PIC16F628A-2 шт (микроконтроллер) (ссылка на алиекспрес pic16f628a )
2) MRF49XA-2 шт (радио трансмиттер) (ссылка на алиекспрес MRF 49 XA )
3) Катушка индуктивности 47nH (или намотать самому)-6шт
Конденсаторы:
4) 33 мкФ (электролитический)-2 шт
5) 0,1 мкФ-6 шт
6) 4,7 пФ-4 шт
7) 18 пФ-2 шт
Резисторы
8) 100 Ом-1 шт
9) 560 Ом-10 шт
10) 1 Ком-3 шт
11) светодиод-1 шт
12) кнопки-10 шт
13) Кварц 10MHz-2 шт
14) Текстолит
15) Паяльник
Как видите устройство состоит из минимум деталей и под силу каждому. Стоит только захотеть. Устройство очень стабильное, после сборки работает сразу. Схему можно делать как на печатной плате. Так и навесным монтажом (особенно для первого раза, так будет легче программировать). Для начала делаем плату. Распечатываем


И травим плату .

Припаиваем все компоненты, PIC16F628A лучше припаивать самым последним, так как его нужно будет еще запрограммировать. Первым делом припаиваем MRF49XA


Главное очень аккуратно, у нее очень тонкие выводы. Конденсаторы для наглядности. Самое главное не перепутать полюса на конденсаторе 33 мкФ так как у него выводы разные, один +, другой -. Все остальные конденсаторы припаиваете как хотите у них нет полярности на выводах


Катушки можно использовать покупные 47nH но лучше намотать самому, все они одинаковые (6 витков провода 0,4 на оправке 2 мм)

Когда все припаяно, хорошо все проверяем. Далее берем PIC16F628A, его нужно запрограммировать. Я использовал PIC KIT 2 lite и самодельную панельку
Вот ссылка на программатор ( Pic Kit2 )


Вот схема подключения


Это все просто, так что не пугайтесь. Для тех кто далек от электроники, советую не начинать с SMD компонентов, а купить все в DIP размере. Я сам так делал в первый раз


И все это реально заработало с первого раза


Открываем программу, выбираем наш микроконтроллер

Для радиоуправления различными моделями и игрушками может быть использована аппаратура дискретного и пропорционального действия.

Основное отличие аппаратуры пропорционального действия от дискретной состоит в том, что она позволяет по командам оператора отклонять рули модели на любой требуемый угол и плавно изменять скорость и направление ее движения «Вперед» или «Назад».

Постройка и налаживание аппаратуры пропорционального действия достаточно сложны и не всегда под силу начинающему радиолюбителю.

Хотя аппаратура дискретного действия и имеет ограниченные возможности, но, применяя специальные технические решения, можно их расширить. Поэтому далее рассмотрим однокомандную аппаратуру управления, пригодную для колесных, летающих и плавающих моделей.

Схема передатчика

Для управления моделями в радиусе 500 м, как показывает опыт, достаточно иметь передатчик с выходной мощностью окьло 100 мВт. Передатчики радиоуправляемых моделей, как правило, работают в диапазоне 10 м.

Однокомандное управление моделью осуществляется следующим образом. При подаче команды управления передатчик излучает высокочастотные электромагнитные колебания, другими словами, генерирует одну несущую частоту.

Приемник, который находится на модели принимает сигнал, посланный передатчиком, в результате чего срабатывает исполнительный механизм.

Рис. 1. Принципиальная схема передатчика радиоуправляемой модели.

В итоге модель, подчинясь команде, меняет направление движения или осуществляет одно какое-нибудь заранее заложенное в конструкцию модели указание. Используя однокомандную модель управления, можно заставить модель осуществлять достаточно сложные движения.

Схема однокомандного передатчика представлена на рис. 1. Передатчик включает задающий генератор колебаний высокой частоты и модулятор.

Задающий генератор собран на транзисторе VT1 по схеме емкостной трех-точки. Контур L2, С2 передатчика настроен на частоту 27,12 МГц, которая отведена Госсвязьнадзором электросвязи для радиоуправления моделями.

Режим работы генератора по постоянному току определяется подбором величины сопротивления резистора R1. Созданные генератором высокочастотные колебания излучаются в пространство антенной, подключенной к контуру через согласующую катушку индуктивности L1.

Модулятор выполнен на двух транзисторах VT1, VT2 и представляет собой симметричный мультивибратор. Модулируемое напряжение снимается с коллекторной нагрузки R4 транзистора VT2 и подается в общую цепь питания транзистора VT1 высокочастотного генератора, что обеспечивает 100% модуляцию.

Управляется передатчик кнопкой SB1, включенной в общую цепь питания. Задающий генератор работает не непрерывно, а только при нажатой кнопке SB1, когда появляются импульсы тока, вырабатываемые мультивибратором.

Посылка в антенну высокочастотных колебаний, созданных задающим генератором, происходит отдельными порциями, частота следования которых соответствует частоте импульсов модулятора.

Детали передатчика

В передатчике использованы транзисторы с коэффициентом передачи тока базы h21э не менее 60. Резисторы типа МЛТ-0,125, конденсаторы — К10-7, КМ-6.

Согласующая антенная катушка L1 имеет 12 витков ПЭВ-1 0,4 и намотана на унифицированном каркасе от карманного приемника с подстроечным ферритовым сердечником марки 100НН диаметром 2,8 мм.

Катушка L2 бескаркасная и содержат 16 витков провода ПЭВ-1 0,8 намотанных на оправке диаметром 10 мм. В качестве кнопки управления можно использовать микропереключатель типа МП-7.

Детали передатчика монтируют на печатной плате из фольгированного стеклотекстолита. Антенна передатчика представляет собой отрезок стальной упругой проволоки диаметром 1...2 мм и длиной около 60 см, которая подключается прямо к гнезду X1, расположенному на печатной плате.

Все детали передатчика должны быть заключены в алюминиевый корпус. На передней панели корпуса располагается кнопка управления. В месте прохождения антенны через стенку корпуса к гнезду XI должен быть установлен пластмассовый изолятор, чтобы предотвратить касание антенны корпуса.

Налаживание передатчика

При заведомо исправных деталях и правильном монтаже передатчик не требует особой наладки. Необходимо только убедиться в его работоспособности и, изменяя индуктивность катушки L1, добиться максимальной мощности передатчика.

Для проверки работы мультивибратора надо включить высокоомные наушники между коллектором VT2 и плюсом источника питания. При замыкании кнопки SB1 в наушниках должен прослушиваться звук низкого тона, соответствующий частоте мультивибратора.

Для проверки работоспособности генератора ВЧ необходимо собрать волномер по схеме рис. 2. Схема представляет собой простой детекторный приемник, в котором катушка L1 намотана проводом ПЭВ-1 диаметром 1...1,2мм и содержит 10 витков с отводом от 3 витка.

Рис. 2. Принципиальная схема волномера для настройки передатчика.

Катушка намотана с шагом 4 мм на пластмассовом каркасе диаметром 25 мм. В качестве индикатора используется вольтметр постоянного тока с относительным входным сопротивлением 10 кОм/В или микроамперметр на ток 50...100мкА.

Волномер собирают на небольшой пластине из фольгированного стеклотекстолита толщиной 1,5 мм. Включив передатчик, располагают от него волномер на расстоянии 50...60 см. При исправном генераторе ВЧ стрелка волномера отклоняется на некоторый угол от нулевой отметки.

Настраивая генератор ВЧ на частоту 27,12 МГц, сдвигая и раздвигая витки катушки L2, добиваются максимального отклонения стрелки вольтметра.

Максимальную мощность высокочастотных колебаний, излучаемых антенной, получают вращением сердечника катушки L1. Настройка передатчика считается оконченной, если вольтметр волномера на расстоянии 1...1,2 м от передатчика показывает напряжение не менее 0,05 В.

Схема приемника

Для управления моделью радиолюбители довольно часто используют приемники, построенные по схеме сверхрегенератора. Это связано с тем, что сверхрегенеративный приемник, имея простую конструкцию, обладает очень высокой чувствительностью, порядка 10...20 мкВ.

Схема сверхрегенеративного приемника для модели приведена на рис. 3. Приемник собран на трех транзисторах и питается от батареи типа «Крона» или другого источника напряжением 9 В.

Первый каскад приемника представляет собой сверхрегенеративный детектор с самогаше-нием, выполненный на транзисторе VT1. Если на антенну не поступает сигнал, то этот каскад генерирует импульсы высокочастотных колебаний, следующих с частотой 60...100 кГц. Это и есть частота гашения, которая задается конденсатором С6 и резистором R3.

Рис. 3. Принципиальная схема сверхрегенеративного приемника радиоуправляемой модели.

Усиление выделенного командного сигнала сверхрегенеративным детектором приемника происходит следующим образом. Транзистор VT1 включен по схеме с общей базой и его коллекторный ток пульсирует с частотой гашения.

При отсутствии на входе приемника сигнала, эти импульсы детектируются и создают на резисторе R3 некоторое напряжение. В момент поступления сигнала на приемник продолжительность отдельных импульсов возрастает, что приводит к увеличению напряжения на резисторе R3.

Приемник имеет один входной контур L1, С4, который с помощью сердечника катушки L1 настраивается на частоту передатчика. Связь контура с антенной — емкостная.

Принятый приемником сигнал управления выделяется на резисторе R4. Этот сигнал в 10...30 раз меньше напряжения частоты гашения.

Для подавления мешающего напряжения с частотой гашения между сверхрегенеративным детектором и усилителем напряжения включен фильтр L3, С7.

При этом на выходе фильтра напряжение частоты гашения в 5... 10 раз меньше амплитуды полезного сигнала. Продетектированный сигнал через разделительный конденсатор С8 подается на базу транзистора VT2, представляющего собой каскад усиления низкой частоты, а далее на электронное реле, собранное на транзисторе ѴТЗ и диодах VD1, VD2.

Усиленный транзистором ѴТЗ сигнал выпрямляется диодами VD1 и VD2. Выпрямленный ток (отрицательной полярности) поступает на базу транзистора ѴТЗ.

При появлении тока на входе электронного реле, коллекторный ток транзистора увеличивается и срабатывает реле К1. В качестве антенны приемника можно использовать штырь длиной 70... 100 см. Максимальная чувствительность сверхрегенеративного приемника устанавливается подбором сопротивления резистора R1.

Детали и монтаж приемника

Монтаж приемника выполняют печатным способом на плате из фольгированного стеклотекстолита толщиной 1,5 мм и размерами 100x65 мм. В приемнике используются резисторы и конденсаторы тех же типов, что и в передатчике.

Катушка контура сверхрегенератора L1 имеет 8 витков провода ПЭЛШО 0,35, намотанных виток к витку на полистироловом каркасе диаметром 6,5 мм, с подстроечным ферритовым сердечником марки 100НН диаметром 2,7 мм и длиной 8 мм. Дроссели имеют индуктивность: L2 — 8 мкГн, a L3 — 0,07...0,1 мкГн.

Электромагнитное реле К1 типа РЭС-6 с обмоткой сопротивлением 200 Ом.

Настройка приемника

Настройку приемника начинают с сверхрегенеративного каскада. Подключают высокоомные наушники параллельно конденсатору С7 и включают питание. Появившийся в наушниках шум свидетельствует об исправной работе сверхрегенеративного детектора.

Изменением сопротивления резистора R1 добиваются максимального шума в наушниках. Каскад усиления напряжения на транзисторе VT2 и электронное реле особой наладки не требуют.

Подбором сопротивления резистора R7 добиваются чувствительности приемника порядка 20 мкВ. Окончательная настройка приемника производится совместно с передатчиком.

Если в приемнике параллельно обмотке реле К1 подключить наушники и включить передатчик, то в наушниках должен прослушиваться громкий шум. Настройка приемника на частоту передатчика приводит к пропаданию шума в наушниках и срабатыванию реле.