Как работает трансформатор тока. Устройство и назначение трансформатора тока

Измерительные трансформаторы тока и напряжения применяются на промышленных предприятиях, в линиях электропередач для контроля различного электрического оборудования. Аварийность высоковольтных измерительных трансформаторов контролируется соответствующими системами. С их участием ведется учет потребления электричества. Что собой представляют измерительные трансформаторы напряжения и тока, назначение и принцип действия установок будет рассмотрено далее.

Разновидности

Высоковольтное измерительное оборудование включает в себя два типа устройств. В эту категорию устройств входят:

  • Измерительный трансформатор напряжения.
  • Измерительный трансформатор тока.

Первая категория приборов предназначена для работы вольтметров, фазометров, реле соответствующих типов. В область работы измерительных трансформаторов тока входит осуществление функционирования амперметров и прочего подобного оборудования.

Представленные типы измерительных трансформаторов производятся с номинальной мощностью от 5 до нескольких сот ВА. Измерительные трансформаторы тока и напряжения предназначены для совместной работы с вольтметрами на 100 В и амперметрами 1-5 А.

Трансформатор тока

Измерительными преобразователями тока выполняется несколько особых функций. К ним подключаются установки, которые выполняют измерение работы оборудования в разных режимах. Принцип действия, которым характеризуется трансформатор тока, обеспечивает несколько основных функций аппаратуры. К ним относится следующее:

  • Преобразование переменных токовых показателей к значениям 1 или 5 А.
  • В нормальном режиме изолируют вторичный токовый контур от высоковольтной составляющей первичной обмотки.
  • Снижение аварийности. Установка предотвращает поражение обслуживающего персонала током, защиту вторичных цепей от перегрузки.

Измерительные трансформаторы постоянного тока помимо перечисленных функций имеют в своем составе выпрямитель. Вторичные цепи заземляются во всех трансформаторах в одной точке. При повреждении изоляции монтаж измерительных трансформаторов позволяет предотвратить перегрузку вторичного контура.

Условия эксплуатации

Измерительные трансформаторы постоянного тока, переменного тока представляют собой высоковольтный агрегат. Прибор нормально функционирует только при выполнении правил по эксплуатации, требований охраны труда. Персонал знакомится со всеми установленными нормами, в каком режиме производится обслуживание, испытание измерительного оборудования. Сотрудники допускаются до работы с трансформатором только после полного инструктажа.

Персонал должен знать, при каких условиях производится испытания, осмотр, поверка и ремонт измерительных трансформаторов. В противном случае даже при условии правильного монтажа работу технической установки могут нарушить неправильные действия сотрудников.

Принцип устройства конструкции запрещает размыкать вторичную обмотку в трансформаторе, которая находится под напряжением. Такому действию сопутствует нарушение изоляции. Потребуется произвести ее замену. Сердечник перегревается. Нормальный режим работы нарушается. В процессе постоянных перегрузок трансформатору становится невозможно выполнять возложенные на него действия. Работает в этом случае неправильно и первичная обмотка. Здесь появляется замыкание. Это также приводит к замене контура.

Чтобы переключить в процессе испытаний в схеме при подведенном электрическом токе, предварительно вторичную катушку закорачивают.

Погрешность

Измерительные выпрямители и трансформаторы тока нуждаются в проверке погрешности. В ходе испытательного процесса к агрегату присоединяется аналогичное оборудование. При монтаже важно, чтобы при поверке техники применялся образцовый, исправный трансформатор тока. В ходе измерений на его вторичном контуре определяется показатель при помощи амперметра.

Испытание оборудования определяет не только погрешность, но и ряд других показателей. В ходе поверки вычисляется коэффициент трансформации, производится техническое освидетельствование качества изоляции контуров, состояние сердечника. Исследуется вопрос о том, выполняется ли установкой возложенные на нее функции, соответствует ли полярность обмоток заданным производителем характеристикам.

При проведении технического освидетельствования соответствия оборудования нормативным требованиям производится контроль вторичных цепей. В случае выявления отклонений, дефектов, требуется замена комплектующих. В зависимости от назначения аппаратура должна демонстрировать заявленные производителем характеристики.

Трансформатор напряжения

Измерительные трансформаторы напряжения применяются для понижения напряжений первичного контура с уровня 110, 40, 6, 10 кВ и т. д. Таким трансформаторам доступно выполнять ряд функций:

  • Преобразовывать первичное переменное напряжение в стандартный электрический ток.
  • Защита обслуживающего персонала, подключенных приборов от перегрузок.
  • Техническая поддержка оперативных цепей, которые работают от постоянного и переменного тока

По принципу функционирования измерительные трансформаторы напряжения приближаются к режиму холостого хода. Пользуются спросом такие разновидности представленной измерительной техники, как НТМК, НАМИ, НОЛ и прочие агрегаты. Установки работают с постоянным и переменным током, которые соответствуют назначению. Мы уже писали про трансформаторы НТМИ, подробнее читайте .

Конструкция

Конструкция приборов измерительного типа схожа на обычные силовые разновидности оборудования. Агрегат имеет первичную и вторичную (одну или несколько) обмотки. Активная часть включает в себя серечник из специальной электротехнической стали. Материал набран в виде пластин определенной конфигурации.

Первичный контур имеет большее количество витков, чем на вторичной катушке. На него подается напряжение от сети. К выводам вторичной обмотки подсоединяется ваттметр или иное подобное измерительное оборудование. Оно характеризуется высоким сопротивлением. Поэтому в ходе нормальной работы по вторичной обмотке подается ток с малым значением.

На выходе устройство может коммутироваться с различными реле, вольтметром, ваттметром. Принцип действия системы похож на работу силового оборудования. Работа производится с переменным значением электрического тока. Чтобы преобразовать его в постоянную величину, используется в конструкции выпрямитель.

Погрешность

Класс точности представленного оборудования зависит от определенных факторов. На этот показатель влияют потери при намагничивании. На величину погрешности измерительного преобразователя напряжения влияют следующие факторы:

  • Проницаемость электротехнической стали сердечника.
  • Конструкционное исполнение магнитопривода.
  • Коэффициент мощности, который определяется вторичной нагрузкой.

Оборудование способно компенсировать погрешность показателя напряжения при уменьшении количества витков в первичной катушке. Компенсирующие обмотки влияют на уменьшение угловой погрешности.

Обслуживание

Перед монтажом, запуском в эксплуатацию производится испытание представленного оборудования. При измерениях выполняется изучение режимов работы поверяемых агрегатов, а также контроль изоляционных слоев.

В измерительном процессе применяется соответствующая техника. Поверка производится в условиях производства оборудования. После монтажа также необходимо производить соответствующую оценку работы оборудования заявленным характеристикам. Если будут выявлены отклонения, выполняется ремонт измерительных трансформаторов.

Периодически в соответствии с условиями эксплуатации производится техническое обслуживание агрегата. На это влияет тип конструкции. Соответствующее обслуживание аппаратуры позволяет избежать сбоев в работе системы, непредвиденных поломок, остановок в работе.

Установкой, обслуживанием представленной техники имеет право заниматься только квалифицированный персонал. В противном случае это будет небезопасно для сотрудников. Неправильное обслуживание приводит к нарушению работы техники.

Рассмотрев особенности измерительных преобразовательных приборов, можно понять их отличие, особенности эксплуатации и обслуживания. Это поможет подобрать оборудование, необходимое для обеспечения соответствующих потребителей электрическим током заданного значения.

Мощные электротехнические установки могут работать с напряжением несколько сот киловольт, при этом величина тока в них может достигать более десятка килоампер. Естественно, что для измерения величин такого порядка не представляется возможным использовать обычные приборы. Даже если бы таковые удалось создать, они получились бы довольно громоздкими и дорогими.

Помимо этого, при непосредственном подключении к высоковольтной сети переменного тока повышается риск поражения электротоком при обслуживании приборов. Избавиться от перечисленных проблем позволило применение измерительных трансформаторов тока (далее ИТТ), благодаря которым удалось расширить возможности измерительных устройств и обеспечить гальваническую развязку.

Назначение и устройство ИТТ

Функции данного типа трансформаторов заключаются в снижении первичного тока до приемлемого уровня, что делает возможным подключение унифицированных измерительных устройств (например, амперметров или электронных электросчетчиков), защитных систем и т.д. Помимо этого, трансформатор тока обеспечивают гальваническую развязку между высоким и низким напряжением, обеспечивая тем самым безопасность обслуживающего персонала. Это краткое описание позволяет понять, зачем нужны данные устройства. Упрощенная конструкция ИТТ представлена ниже.

Конструкция измерительного трансформатора тока

Обозначения:

  1. Первичная обмотка с определенным количеством витков (W 1).
  2. Замкнутый сердечник, для изготовления которого используется электротехническая сталь.
  3. Вторичная обмотка (W 2 — число витков).

Как видно из рисунка, катушка 1 с выводами L1 и L2 подключена последовательно в цепь, где производится измерение тока I 1 . К катушке 2 подключается приборы, позволяющие установить значение тока I 2 , релейная защита, система автоматики и т.д.

Основная область применения ТТ — учет расхода электроэнергии и организация систем защиты для различных электроустановок.

В измерительном трансформаторе тока обязательно наличие изоляции как между катушками, витками провода в них и магнитопроводом. Помимо этого по нормам ПУЭ и требованиям техники безопасности, необходимо заземлять вторичные цепи, что обеспечивает защиту в случае КЗ между катушками.

Получить более подробную информацию о принципе действия ТТ и их классификации, можно на нашем сайте.

Перечень основных параметров

Технические характеристики трансформатора тока описываются следующими параметрами:

  • Номинальным напряжением, как правило, в паспорте к прибору оно указано в киловольтах. Эта величина может быть от 0,66 до 1150 кВ. получит полную информацию о шкале напряжений можно в справочной литературе.
  • Номинальным током первичной катушки (I 1), также указывается в паспорте. В зависимости от исполнения, данный параметр может быть в диапазоне от 1,0 до 40000,0 А.
  • Током на вторичной катушке (I 2), его значение может быть 1,0 А (для ИТТ с I 1 не более 4000,0 А) или 5,0 А. Под заказ могут изготавливаться устройства с I 2 равным 2,0 А или 2,50 А.
  • Коэффициентом трансформации (КТ), он показывает отношение тока между первичной и вторичной катушками, что можно представить в виде формулы: КТ = I1/I2. Коэффициент, определяемый по данной формуле, принято называть действительным. Но для расчетов еще используется номинальный КТ, в этом случае формула будет иметь вид: I НОМ1 /I НОМ2 , то есть в данном случае оперируем не действительными, а номинальными значениями тока на первой и второй катушке.

Ниже, в качестве примера, приведена паспортная таблица модели ТТ-В.


Перечень основных параметров измерительного трансформатора тока ТТ-В

Виды конструкций измерительных трансформаторов

В зависимости от исполнения, данные устройства делятся на следующие виды:


Обозначения:

  • A – Клеммная колодка вторичной обмотки.
  • В – Защитный корпус.
  • С – Контакты первичной обмотки.
  • D – Обмотка (петлевая или восьмерочная) .
  1. Стержневые , их также называют одновитковыми. В зависимости от исполнения они могут быть:

Обозначения:

  • А – встроенный ТТ.
  • В – изолятор силового ввода трансформатора подстанции.
  • С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.


Такой вариант конструкции существенно упрощает монтаж/демонтаж.

Расшифровка маркировки

Обозначение отечественных моделей интерпретируется следующим образом:

  • Первая литера в названии модели указывает на вид трансформатора, в нашем случае это будет буква «Т», указывая на принадлежность к ТТ.
  • Вторая литера указывает на особенность конструктивного исполнения, например, буква «Ш», говорит о том, что данное устройство шинное. Если указана литера «О», то это опорный ТТ.
  • Третьей литерой шифруется исполнение изоляции.
  • Цифрами указывается класс напряжения (в кВ).
  • Литера, для обозначения климатического исполнения согласно ГОСТ 15150 69
  • КТ, с указанием номинального тока первичной и вторичной обмотки.

Приведем пример расшифровки маркировки трансформатора тока.


Как видим, на рисунке изображена маркировка ТЛШ 10УЗ 5000/5А, это указывает на то, что перед нами трансформатор тока (первая литера Т) с литой изоляцией (Л) и шинной конструкцией (Ш). Данное устройство может использоваться в сети с напряжением до 10 кВ. Что касается исполнения, то литера «У», говорит о том, что аппарат создан для эксплуатации в умеренной климатической зоне. КТ 1000/5 А, указывает на величину номинального тока на первой и второй обмотке.

Схемы подключения

Обмотки трехфазных ТТ могут быть подключены «треугольником» или «звездой» (см. рис. 8). Первый вариант применяется в тех случаях, когда необходимо получить большую силу тока в цепи второй обмотки или требуется сдвинуть по фазе ток во вторичной катушке, относительно первичной. Второй способ подключения применяется, если необходимо отслеживать силу тока в каждой фазе.


Рисунок 8. Схема подключения трехобмоточного ТТ «звездой» и «треугольником»

При наличии изолированной нейтрали, может использоваться схема для измерения разности токов между двумя фазами (см. А на рис. 9) или подключение «неполной звездой» (B).


Рисунок 9. Схема подключения ТТ на разность двух фаз (А) и неполной звездой (В)

Когда необходимо запитать защиту от КЗ на землю, применяется схема, позволяющая суммировать токи всех фаз (см. А на рис 10.). Если к выходу такой цепи подключить реле тока, то оно не будет реагировать на КЗ между фазами, но обязательно сработает, если происходит пробой на землю.


Рис 10. Подключения: А – для суммы токов всех фаз, В и С — последовательное и параллельное включение двухобмоточных ТТ

В завершении приведем еще два примера соединения вторичных обмоток ТТ для снятия показаний с одной фазы:

Вторичные катушки включаются последовательно (В на рис. 10), благодаря этому возникает возможность измерения суммарной мощности.

Вторичные обмотки соединяются параллельно, что дает возможность понизить КТ, поскольку происходит суммирование тока в этих катушках, в то время как в линии этот показатель остается без изменений.

Выбор

При выборе трансформатора тока в первую очередь необходимо учитывать номинальное напряжение прибора было не ниже, чем в сети, где он будет установлен. Например, для трехфазной сети с напряжением 380 В можно использовать ТТ с классом напряжения 0,66 кВ, соответственно для установок более 1000 В, устанавливать такие устройства нельзя.

Помимо этого I НОМ ТТ должен быть равен или превышать максимальный ток установки, где будет эксплуатироваться прибор.

Кратко изложим и другие правила, позволяющие не ошибиться с выбором ТТ:

  • Сечение кабеля, которым будет подключаться ТТ к цепи вторичной нагрузки, не должно приводить к потерям сверх допустимой нормы (например, для класса точности 0,5 потери не должны превышать 0,25%).
  • Для систем коммерческого учета должны использоваться устройства с высоким классом точности и низким порогом погрешности.
  • Допускается установка токовых трансформаторов с завышенным КТ, при условии, что при максимальной нагрузке ток будет до 40% от номинального.

Посмотреть нормы и правила, по которым рассчитываются измерительные трансформаторы тока (в том числе и высоковольтные) можно в ПУЭ (п.1.5.1.). Пример расчета показан на картинке ниже.


Пример расчета трансформатора тока

Что касается выбора производителя, то мы рекомендуем использовать брендовую продукцию, достоинства которой подтверждены временем, например ABB, Schneider Electric b и т.д. В этом случае можно быть уверенным, что указанные в паспорте технические данные, а методика испытаний соответствовала нормам.

Обслуживание

Необходимо обратить внимание, что при соблюдении режима и условий эксплуатации, правильно подобранных номиналах и регулярном обслуживании ТТ будет служить 30 лет и более. Для этого необходимо:

  • Обращать внимание на различные виды неисправностей, заметим, что большинство из них можно обнаружить при визуальном осмотре.
  • Производить контроль нагрузки в первичных цепях и не допускать перегрузку выше установленной нормы.
  • Необходимо отслеживать состояние контактов первичной цепи (если таковые имеются), на них должны отсутствовать внешние признаки повреждений.
  • Не менее важен контроль состояния внешней изоляции, почти в половине случаев ее стойкость нарушается из-за скопления грязи или влаги, которые закорачивают контакты на землю.
  • У масляных ТТ осуществляют проверку уровня масла, его чистоту, наличие подтеков и т.д. Обслуживание таких установок практически не сильно отличается от других силовых установок, например, емкостных трансформаторов НДЕ, разница заключается в небольших технических деталях.
  • Поверка ТТ должна проводиться согласно действующих нормативов (ГОСТ 8.217 2003).
  • При обнаружении неисправности производится замена прибора. Поврежденный ТТ отправляют в ремонт, который производится специализированными службами.

Трансформатором тока(ТН, TV) – называют электротехническое устройство, изменяющее величину выходного значения электротока в процессе передачи с первичной на вторичную обмотку. В результате пропуска через трансформатор, электрический ток передаётся из одной системы в другую, пропорционально изменяясь, в зависимости от поставленной задачи.

Особенности конструкции и принцип работы

Принцип работы трансформаторов тока основан на использовании закона электромагнитной индукции.

Прибор состоит из следующих элементов:

  • первичной и вторичной обмоток;
  • замкнутого сердечника (магнитопровода).

Обмотки накручены вокруг сердечника, изолированно от него и друг от друга. Иногда первичная обмотка может заменяться медной или алюминиевой шиной. Трансформация величины электрического тока происходит за счёт разницы количества витков первичной и вторичной обмоток. В большинстве случаев устройство предназначено для снижения показателя тока, поэтому вторичная обмотка выполняется с меньшим количеством витков, нежели первичная.

Электроток подаётся на первичную обмотку при последовательном подключении. В результате на катушке формируется магнитный поток и наводится электродвижущая сила, вызывающая возникновение тока на выходной катушке.

К выходной обмотке подключают потребляющий прибор, в зависимости от целей, для которых используется устройство.

Некоторые устройства выполняются с несколькими выходными катушками, что позволяет путём переключения изменять величину трансформации электрического тока. В целях безопасности, для обеспечения защиты при пробое изоляции, выходной контур заземляется.

Виды трансформаторов тока

Данные электротехнические устройства классифицируются по нескольким характеристикам. В зависимости от назначения токовые трансформаторы могут быть:

  • защитными – снижающими параметры тока для предотвращения выхода из строя потребляющих устройств;
  • измерительными – через которые подключаются средства измерения, в том числе электросчётчики;
  • промежуточными – устанавливаемыми в системы релейной защиты;
  • лабораторными – используемыми для исследовательских целей, обладающими низкой погрешностью измерения, нередко – с несколькими коэффициентами трансформации.

Учитывая характер условий эксплуатации, различают трансформаторы:


В зависимости от исполнения первичных обмоток различают устройства:

  • одновиткового исполнения;
  • многовитковые;
  • шинные.


С учётом способа установки их подразделяют на следующие типы:

  • проходной;
  • опорный.


По числу ступеней изменения тока выделяют трансформаторы:

  • одноступенчатого,
  • двухступенчатого (каскадного) типа.

Устройства, в зависимости от величины напряжения, на которое они рассчитаны делят на предназначенные для работы в условиях более и менее 1000 В.

Для изготовления сердечника применяется специальная трансформаторная сталь. Изоляция выполняется сухой (бакелитовой, фарфоровой), обычной или бумажно-масляной.

Расшифровка маркировки


Технические параметры

Трансформаторы тока характеризуются следующими индивидуальными параметрами:



Значения которыми могут обладать ТТ

При выборе устройства необходимо учитывать значение указанных и других характеристик.

Схемы подключения трансформаторов тока

Силового оборудования

Схема подключения для 110 кВ и выше:


Схема подключения для 6-10 кВ в ячейках КРУ:


Вторичные цепи

Схема включение трансформатора тока в полную звезду:


Схема включение трансформатора тока в неполную звезду(З а счет распределения токов на дополнительном приборе получается отобразить векторную сумму фаз А и С, которая противоположно направлена вектору фазы В при симметричном режиме нагрузки сети):


Схема включение трансформатора тока в неполную звезду(для контроля линейного тока с помощью реле):


Схема включение трансформатора тока в полную звезду с подключением обмотки реле к фильтру нулевой последовательности(ФТНП):


Популярные виды и стоимость трансформаторов

Бытового потребителя больше интересуют токовые трансформаторы, используемые для подключения электросчётчиков. В продаже предлагаются приборы типов:

  • ТОЛ и другие.

Цена зависит от разновидности, конструкции, характеристик и напряжений на котором будет использоваться ТН:

  • 0,66 кВ от 300 – 5000,
  • 6-10 кВ 10000 – 45000,
  • 35 кВ – около 50 000р,
  • 110 кВ и выше – нужно уточнять у производителя.

Возможные неисправности

Указанные устройства чаще всего выходят из строя в результате повреждения изоляции, вызванного перегревом, непредусмотренным механическим воздействием или ошибкой при сборке.

Чтобы проверить состояние прибора, измеряют сопротивление межвитковой изоляции. Если она меньше установленного значения, оборудование нуждается в замене или ремонте.

Также для диагностики используются специальные приборы – тепловизоры, позволяющие проверить состояние всей действующей схемы. Наиболее сложные диагностические процедуры производятся в лабораторных условиях. Своевременная диагностика позволяет исключить аварийные ситуации и обеспечить нормальную работу устройств.

Трансформатором тока (ТТ) называется трансформатор, в котором при нормальных условиях применения вторичный ток практически пропорционален первичному току и при правильном включении сдвинут относительно его на угол, близкий к нулю.

Первичная обмотка трансформатора тока включена в цепь последовательно (в рассечку токопровода), а вторичная обмотка замыкается на некоторую нагрузку (измерительные приборы и реле), обеспечивая прохождение по ней тока, пропорционального току первичной обмотке.

В трансформаторах тока высокого напряжения первичная обмотка изолирована от вторичной обмотки (от земли) на полное рабочее напряжение. Один конец вторичной обмотки обычно заземляется. Поэтому она имеет потенциал, близкий к потенциалу земли.

Трансформаторы тока по своему назначению разделяются на трансформаторы тока для измерений и трансформаторы тока для защиты. В некоторых случаях эти функции совмещают в одном трансформаторе тока.

Трансформаторы тока для измерений предназначаются для передачи измерительной информации измерительным приборам. Они устанавливаются в цепях высокого напряжения или в цепях с большим током, то есть в цепях, в которых не возможно непосредственное включение измерительных приборов. Ко вторичной обмотке ТТ для измерений подключаются амперметры, токовые обмотки ваттметров, счетчиков и аналогичных приборов. Таким образом, трансформатор тока для измерений обеспечивает:
1) преобразование переменного тока любого значения в переменный ток, приемлемый по значению для непосредственного измерения с помощью стандартных измерительных приборов;
2) изолирование измерительных приборов, к которым имеет доступ обслуживающий персонал, от цепи высокого напряжения.

Трансформаторы тока для защиты предназначаются для передачи измерительной информации в устройства защиты и управления. Соответственно этому трансформатор тока для защиты обеспечивает:
1) преобразование переменного тока любого значения в переменный ток, приемлемый по значению для питания устройств релейной защиты;
2) изолирование реле, к которым имеет доступ обслуживающий персонал, от цепи высокого напряжения.

Применение трансформаторов тока в установках высокого напряжения является необходимым даже в тех случаях, когда уменьшение тока для измерительных приборов или реле не требуется.

Классификация трансформаторов тока

Все трансформаторы тока – и для измерений, и для защиты – можно классифицировать по следующим основным признакам.

По роду установки: трансформаторы тока для работы на открытом воздухе (категория размещения 1 по ГОСТ 15150-69); для работы в закрытых помещениях (по ГОСТ 15150-69); для встраивания во внутренние полости электрооборудования (категория в соответствии с таблицей 1); для специальных установок (в шахтах, на судах, электровозах и так далее).

Таблица 1

По способу установки: проходные трансформаторы тока, предназначенные для использования в качестве ввода и устанавливаемые в проемах стен, потолков или в металлических конструкциях; опорные, предназначенные для установки на опорной плоскости; встраиваемые, то есть предназначенные для установки во внутренние полости электрооборудования.

По числу коэффициентов трансформации: с одним коэффициентом трансформации; с несколькими коэффициентами трансформации, получаемыми изменением числа витков первичной или вторичной обмотки, или обеих обмоток, или применением нескольких вторичных обмоток с различным числом витков, соответствующих различным значениям номинального тока.

По числу ступеней трансформации: одноступенчатые; каскадные (многоступенчатые), то есть с несколькими ступенями трансформации тока.

По выполнению первичной обмотки: одновитковые; многовитковые.

Одновитковые трансформаторы тока

Одновитковые трансформаторы тока (рисунок 1) имеют две разновидности: без собственной первичной обмотки; с собственной первичной обмоткой. Одновитковые ТТ, не имеющие собственной первичной обмотки, выполняются встроенными, шинными или разъемными.

Встроенный трансформатор тока 1 (рисунок 1) представляет собой магнитопровод с намотанной на него вторичной обмоткой и не имеет собственной первичной обмотки. Ее роль выполняет токоведущий стержень проходного изолятора. Этот трансформатор тока не имеет изоляционных элементов между первичной и вторичной обмотками. Их роль выполняет изоляция проходного изолятора.

В шинном трансформаторе тока 1 роль первичной обмотки выполняют одна или несколько шин распределительного устройства, пропускаемые при монтаже сквозь внутреннюю полость проходного изолятора. Последний изолирует первичную обмотку от вторичной.

Рисунок 1. Схема трансформатора тока.
–––––– собственная первичная обмотка ТТ; – – – – токоведущий стержень проходного изолятора (шина)

Разъемный трансформатор тока 2 тоже не имеет собственной первичной обмотки. Его магнитопровод состоит из двух частей, стягиваемых болтами. Он может размыкаться и смыкаться вокруг проводника с током, являющимся первичной обмоткой этого ТТ. Изоляция между первичной и вторичной обмотками наложена на магнитопровод со вторичной обмоткой.

Одновитковые ТТ, имеющие собственную первичную обмотку, выполняются со стержневой первичной обмоткой или с U-образной.
Трансформатор тока 3 имеет первичную обмотку в виде стержня кругового или прямоугольного сечения, закрепленного в проходном изоляторе.

Трансформатор 4 имеет U-образную первичную обмотку, выполненную таким образом, что на нее наложена почти вся внутренняя изоляция ТТ.

Многовитковые трансформаторы тока

Многовитковые трансформаторы тока (рисунок 1) изготавливаются с катушечной первичной обмоткой, надеваемой на магнитопровод; с петлевой первичной обмоткой 5 , состоящей из нескольких витков; со звеньевой первичной обмоткой 6 , выполненной таким образом, что внутренняя изоляция трансформатора тока конструктивно распределена между первичной и вторичной обмотками, а взаимное расположение обмоток напоминает звенья цепи; с рымовидной первичной обмоткой, выполненной таким образом, что внутренняя изоляция трансформатора тока нанесена в основном только на первичную обмотку, имеющую форму рыма.

По роду изоляции между первичной и вторичной обмотками ТТ изготавливаются с твердой (фарфор, литая изоляция, прессованная изоляция и так далее); с вязкой (заливочные компаунды); с комбинированной (бумажно-масляная, конденсаторного типа) или газообразной (воздух, элегаз) изоляцией.

По принципу преобразования тока ТТ делятся на электромагнитные и оптико-электронные.

Основные параметры и характеристики трансформаторов тока

Основными параметрами и характеристиками трансформатора тока в соответствии с ГОСТ 7746-2001 являются:

1. Номинальное напряжение – действующее значение линейного напряжения, при котором предназначен работать ТТ, указываемое в паспортной таблице трансформатора тока. Для отечественных ТТ принята шкала номинальных напряжений, кВ:

0,66; 6; 10; 15; 20; 24; 27; 35; 110; 150; 220; 330; 500; 750; 1150.

2. Номинальный первичный ток I 1н – указываемый в паспортной таблице ТТ ток, проходящий по первичной обмотке, при котором предусмотрена продолжительная работа ТТ. Для отечественных ТТ принята следующая шкала номинальных первичных токов, А:

1; 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000; 4000; 5000; 6000; 8000; 10000; 12000; 14000; 16000; 18000; 20000; 25000; 28000; 30000; 35000; 40000.

В трансформаторах тока, предназначенных для комплектования турбо- и гидрогенераторов, значения номинального тока свыше 10000 А являются рекомендуемыми.

Трансформаторы тока, рассчитанные на номинальный первичный ток 15; 30; 75; 150; 300; 600; 750; 1200; 1500; 3000 и 6000 А, должны допускать неограниченно длительное время прохождения наибольшего рабочего первичного тока, равного соответственно 16; 32; 80; 160; 320; 630; 800; 1250; 1600; 3200 и 6300 А. В остальных случаях наибольший первичный ток равен номинальному первичному току.

3. Номинальный вторичный ток I 2н – указываемый в паспортной таблице ТТ ток, проходящий по вторичной обмотке. Номинальный вторичный ток принимается равным 1, 2 или 5 А.

2н соответствует полному сопротивлению его внешней вторичной цепи, выраженному в омах, с указанием коэффициента мощности. Вторичная нагрузка может также характеризоваться полной мощностью в вольт-амперах, потребляемой ею при данном коэффициенте мощности и номинальном вторичном токе.

Вторичная нагрузка с коэффициентом мощности cosφ 2 = 0,8, при которой гарантируется установленный класс точности ТТ или предельная кратность первичного тока относительно его номинального значения, называется номинальной вторичной нагрузкой ТТ z 2н.ном.

Для отечественных трансформаторов тока установлены следующие значения номинальной вторичной нагрузки S 2н.ном, выраженной в вольт-амперах, при коэффициенте мощности cosφ 2 = 0,8:

3; 5; 10; 15; 20; 25; 30; 50; 60; 75; 100.

Соответствующие значения номинальной вторичной нагрузки z 2н.ном (в омах) определяются выражением:

z 2н.ном = S 2н.ном / I 2 2ном.

5. Коэффициент трансформации ТТ равен отношению первичного тока ко вторичному току.

В расчетах трансформаторов тока применяются два термина: действительный коэффициент трансформации n и номинальный коэффициент трансформации n н. Под действительным коэффициентом трансформации n понимается отношение действительного первичного тока к действительному вторичному току. Под номинальным коэффициентом мощности n н понимается отношение номинального первичного тока к номинальному вторичному току.

6. Стойкость ТТ к механическим и тепловым воздействиям характеризуется током электродинамической стойкости и током термической стойкости.

Ток электродинамической стойкости I д равен наибольшей амплитуде тока короткого замыкания за все время его протекания, которую ТТ выдерживает без повреждений, препятствующих его дальнейшей исправной работе. Ток I д характеризует способность ТТ противостоять механическим (электродинамическим) воздействиям тока короткого замыкания. Электродинамическая стойкость может характеризоваться также кратностью K д, представляющей собой отношение тока электродинамической стойкости к амплитуде номинального первичного тока. Требования электродинамической стойкости не распространяются на шинные, встроенные и разъемные ТТ.

Ток термической стойкости I tт равен наибольшему действующему значению тока короткого замыкания за промежуток t т, которое ТТ выдерживает в течение этого промежутка времени без нагрева токоведущих частей до температур, превышающих допустимые при токах короткого замыкания, и без повреждений, препятствующих его дальнейшей работе.

Термическая стойкость характеризует способность ТТ противостоять тепловым воздействиям тока короткого замыкания. Для суждения о термической стойкости ТТ необходимо знать не только значения тока, проходящего через трансформатор, но и время его прохождения или, иначе говоря, знать общее количество выделенного тепла, которое пропорционально произведению квадрата тока I tт и времени его прохождения t т. Это время, в свою очередь, зависит от параметров сети, в которой установлен ТТ, и изменяется от одной до нескольких секунд.

Термическая стойкость может характеризоваться кратностью K т тока термической стойкости, представляющей собой отношение тока термической стойкости к действующему значению номинального первичного тока.

В соответствии с ГОСТ 7746-2001 для отечественных трансформаторов тока установлены следующие токи термической стойкости:
а) двухсекундный I 2т (или его кратность K 2т по отношению к номинальному первичному току) для трансформаторов тока на номинальные напряжения 330 кВ и выше;
б) трехсекундный I 3т (или его кратность K 3т по отношению к номинальному первичному току) для трансформаторов тока на номинальные напряжения до 220 кВ включительно.

Время t т протекания тока термической стойкости может быть меньше указанных значений и должно устанавливаться в технических условиях на конкретный тип ТТ.

Между токами электродинамической и термической стойкости должно быть соблюдено соотношение

I д ≥ 1,8 × √2 × I т

Температура токоведущих частей ТТ при прохождении тока термической стойкости не должна превышать: 200°С для токоведущих частей из алюминия; 250°С для токоведущих частей из меди и ее сплавов, и 300°С для токоведущих частей из меди и ее сплавов, не соприкасающихся с органической изоляцией или маслом. При определении указанных значений температуры следует исходить из начальных ее значений, соответствующих длительной работе трансформатора тока при номинальном токе.

Значения токов электродинамической и термической стойкости государственным стандартом не нормируются. Однако они должны соответствовать электродинамической и термической стойкости других аппаратов высокого напряжения, устанавливаемых в одной цепи с трансформатором тока. В таблице 2 приведены практические данные динамической и термической стойкости отечественных трансформаторов тока.

Таблица 2

Данные электродинамической и термической стойкости некоторых типов отечественных трансформаторов тока

Трансформатор тока Номинальный первичный ток, А Кратность
электродинамическая К д Термическая К т
Проходной одновитковый:
нормальное исполнение

Усиленное исполнение


до 600
1000
1500
до 600
1000

160 – 170
100 – 110
60 – 70
150 – 170
100 – 110

80
80
80
120 – 140
120 – 140
Шинный 2000 – 6000 250 – 300
Проходной многовитковый:
нормальное исполнение
усиленное исполнение

5 – 300
5 – 300

45 – 250
90 – 500

70 – 80
100 – 250
Опорной наружной установки:
со звеньевой обмоткой
с рымовидной обмоткой

до 2000
до 2000

60 – 150
80 – 100

60 – 150
30 – 45

7. Механическая нагрузка определяется давлением ветра со скоростью 40 м/с на поверхность трансформатора тока и тяжением подводящих проводов (в горизонтальном направлении в плоскости выводов первичной обмотки), которое должно быть не менее:
500 Н (50 кгс) – для трансформаторов на номинальное напряжение до 35 кВ включительно;
1000 Н (100 кгс) – для трансформаторов на номинальное напряжение 110 – 220 кВ;
1500 Н (150 кгс) – для трансформаторов на номинальное напряжение 330 кВ и выше.

Таковы основные технические параметры и характеристики трансформаторов тока. При проектировании ТТ помимо этих параметров должны учитываться следующие требования к конструкции:

1. Контактные зажимы выводов первичной обмотки трансформаторов тока должны выполняться с учетом требований ГОСТ 10434-82, а трансформаторов тока наружной установки – с учетом, кроме того, требований ГОСТ 21242-75. Контактные зажимы вторичных обмоток должны выполняться с учетом требований ГОСТ 10434-82. Контактные зажимы вторичных обмоток встроенных трансформаторов тока могут быть расположены на конструктивных элементах аппарата, в который встроен трансформатор тока. В трансформаторах тока наружной установки выводные зажимы вторичной обмотки должны находиться в специальных коробках, надежно защищающих их от попадания атмосферных осадков.

Обозначение выводных концов первичных и вторичных обмоток согласно ГОСТ 7746-2001 должно производиться в соответствии с таблицей 3. Линейные выводы первичной обмотки обозначаются символами Л 1 и Л 2 , которые должны наноситься так, чтобы при направлении тока в первичной обмотке от Л 1 и Н 1 соответственно к К i и Л 2 вторичный ток проходил по внешней цепи (приборам) от И 1 к И 2 .

Таблица 3

Обозначения выводных концов первичных и вторичных обмоток


2. Маслонаполненный трансформатор тока должен иметь маслорасширитель (компенсатор) и указатель уровня масла. Вместимость маслорасширителя должна обеспечивать постоянное наличие в нем масла при всех режимах работы трансформатора тока – от отключенного состояния до нормированной токовой нагрузки – и при колебаниях температуры окружающего воздуха, установленных для данного климатического района.

В трансформаторах тока на номинальные напряжения 330 кВ и более обязательно должна быть предусмотрена защита масла от увлажнения, например посредством сильфонов. Целесообразно такую же защиту предусматривать и в трансформаторах тока на меньшие напряжения.

3. Размеры указателя уровня масла должны быть такими, чтобы обслуживающий персонал мог с безопасного расстояния наблюдать за уровнем масла в трансформаторе тока.

4. Трансформаторы тока, имеющие массу более 50 кг, должны иметь приспособления для подъема. Если такие приспособления невозможно выполнить, то завод-изготовитель должен указывать в инструкции места захвата трансформаторов тока при подъеме.

5. Трансформаторы тока, у которых амплитуда напряжения на разомкнутой вторичной обмотке при номинальном токе в первичной обмотке превышает 350 В, должны иметь надпись: "Внимание! Опасно! На разомкнутой обмотке высокое напряжение".

6. Трансформаторы тока, кроме встроенных, должны иметь контактную площадку для присоединения заземляющего проводника и заземляющий зажим в соответствии с требованиями ГОСТ 21130-75 и ГОСТ 12.2.007.3-75. Возле заземляющего зажима должен быть установлен знак заземления по ГОСТ 21130-75. Указанные требования не распространяются на ТТ с корпусом из литой смолы или пластмассы, не имеющие подлежащих заземлению металлических частей, а также на ТТ, не подлежащие заземлению согласно ГОСТ 12.2.007.0-75.

Без электроснабжения невозможно представить нашу жизнь. Чтобы электрическая система работала без сбоев или не пришла в негодность из-за неисправности в кабеле или в силовом оборудовании, её параметры необходимо контролировать, замерять. Диагностика, заключающаяся в проведении электрических измерений, способна выявить причины сбоев и вовремя устранить их. Для этого применяются приборы, измеряющие величины токов, напряжений, мощности.

Но если в электроустановках с низким напряжением возможно подключение измерительных приборов напрямую, непосредственно к измеряемому узлу, то в высоковольтных цепях проблематично отследить параметры без применения измерительных трансформаторов. В электроустановках напряжение доходит до 750 кВ и выше, а токи устанавливаются в десятки килоампер и более. Для «прямого» измерения потребовались бы громоздкое и дорогое оборудование, а иногда измерения вообще не возможно было бы произвести. Также, при обслуживании приборов, напрямую подключенных к сети высокого напряжения, персонал подвергался бы опасности поражения током.

Измерительные трансформаторы тока (ТТ) и напряжения (ТН) способствуют расширению пределов измерений обычных измерительных устройств и одновременно изолируют их от цепей высокого напряжения. Измерительные трансформаторы создаются с высоким классом точности. Во время эксплуатации их метрологические характеристики подлежат первичной и периодической поверке на правильность работы.

Наиболее часто в сетях переменного тока применяются электромагнитные трансформаторы. Они состоят из магнитопровода, первичной и одной или нескольких вторичных обмоток. ТТ преобразовывает замеряемый высокий ток в малый, а ТН - измеряемое высшее напряжение в низшее. Измерительные трансформаторы включаются в цепи между высоковольтным оборудованием и контрольно-измерительными приборами: амперметрами, вольтметрами, ваттметрами, приборами релейной защиты, телемеханики и автоматики, счетчиками энергии.

Зачем нужны измерительные трансформаторы напряжения

  • трансформируют напряжение участка сети или установки в напряжение приемлемой величины для осуществления измерений с помощью стандартных измерительных устройств, питания релейной защиты, устройств сигнализации, автоматики, телемеханики;
  • изолируя вторичные приборы и цепи, защищают оборудование от высокого напряжения и персонал, имеющего доступ к обслуживанию электроустановок, от поражения током.

Подключение ТН к высоковольтной части электроустановки осуществляется соединением его первичной обмотки «в параллель» к цепи высокого напряжения. Номинал вторичных обмоток трансформатора напряжения составляет обычно 100 В. Так как сопротивление измерительных приборов, подключаемых к вторичной обмотке, велико, током можно пренебречь. Поэтому основной режим работы ТН подобен режиму холостого хода типового силового трансформатора.

Трансформаторы напряжения и их конструкция

Трансформаторы напряжения подразделяются:

  • по числу фаз: на одно- и трехфазные;
  • по числу вторичных обмоток: двухобмоточный ТН имеет одну вторичную обмотку, трехобмоточный - две: основную и дополнительную;
  • по назначению вторичных обмоток: с основной вторичной обмоткой, с дополнительной, со специальной компенсационной - для контроля изоляции цепи;
  • по особенностям исполнений - на трансформаторы защищенного типа, водозащищенного типа (защита от капель и влаги), герметичные, со встроенным предохранителем и с антирезонансной конструкцией;
  • по принципу действия и особенностям конструкций: на каскадные, ёмкостные, заземляемые и не заземляемые.

У каскадного ТН первичная обмотка разделена на несколько поочередно соединенных секций, передача энергии от которых к вторичным обмоткам происходит посредством связующих и выравнивающих обмоток. У ёмкостного ТН в конструкции имеется ёмкостный делитель. Заземляемый однофазный ТН - устройство, у которого один конец первичной обмотки должен быть заземлен. У заземляемого трехфазного ТН должна быть заземлена нейтраль первичной обмотки. Все части первичной обмотки не заземляемого ТН изолированы от земли.

Зачем нужны трансформаторы тока

Трансформатор тока - базовый измерительный аппарат в электроэнергетике, применяемый для преобразования тока первичной сети во вторичный стандартный ток величиной 5 А или 1 А. Первичная обмотка соединяется непосредственно с цепью высокого напряжения последовательным способом подключения. Вторичная обмотка включается во вторичные цепи измерений, защиты и учета. 5А - часто встречающийся номинал вторичной обмотки.

Принцип действия и конструкция трансформаторов тока

Первичная обмотка ТТ включается в разрез линейного провода (последовательно с нагрузкой), в котором измеряется сила тока. Вторичная обмотка замкнута на измерительное устройство с малым сопротивлением. Поэтому, в отличие от силового трансформатора, для которого режим короткого замыкания является аварийным, нормальным режимом для измерительного ТТ являются условия, близкие к КЗ, так как сопротивление во вторичной цепи у него мало.

Через первичную обмотку, имеющую определённое количество витков, течет ток. Вокруг катушки наводится магнитный поток, который улавливается магнитопроводом. Пересекая перпендикулярно ориентированные витки вторичной обмотки, магнитный поток формирует электродвижущую силу. Под влиянием последней возникает ток, протекающий по катушке и нагрузке на выходе. Одновременно на зажимах вторичной цепи образуется падение напряжения.

По конструктиву и применению ТТ условно подразделяются на несколько разновидностей:

    Опорные монтируются на опорной плоскости.
    Проходные используются в качестве ввода и устанавливаются в металлических конструкциях, в проемах стен или потолков.
    Встраиваемые размещаются в полости оборудования: электрических выключателей, генераторов и других электроаппаратов и машин.
    Разъемные не имеют своей первичной обмотки. Их магнитопроводы из двух половинок, стягиваемых болтами, можно размыкать и закреплять вокруг проводников под током. Эти проводники исполняют роль первичных обмоток.
    Шинные изготавливаются тоже без первичных обмоток - их роль выполняют пропущенные сквозь окна магнитопроводов ТТ токоведущие шины распредустройств.
    Накладные надеваются сверху на проходной изолятор.
    Переносные предназначаются для лабораторных и контрольных измерений.

По выполнению первичной обмотки ТТ подразделяются на одновитковые и многовитковые, а по числу вторичных обмоток - на устройства с одной обмоткой и с несколькими вторичными обмотками (до четырёх, пяти). По числу ступеней трансформации - на одноступенчатые и каскадные.

К общей классификации трансформаторов обоих типов относятся: количество коэффициентов трансформации (однодиапазонные и многодиапазонные), критерии по материалу диэлектрика между первичной и вторичной обмотками и по материалу внешней изоляции - маслонаполненные, газонаполненные, сухие, с литой, фарфоровой и прессованной изоляцией, с вязкими заливочными компаундами, комбинированные бумажно-масляные. ТТ и ТН устанавливаются на открытом воздухе, в закрытых и в подземных установках, на морских и речных судах, внутри оболочек электроустановок и связываются контрольными проводами и кабелями с оборудованием вторичных цепей. По диапазону рабочего напряжения выделяют трансформаторы, функционирующие в устройствах до 1000 В и выше 1000 B. Трансформаторы также классифицируются по классу точности.

Видео про трансформаторы тока

Кратко о назначении трансформатора тока, составе и особенностях конструкции, о схеме и принципе работы. Почему нельзя допускать размыкание вторичных цепей трансформатора тока без предварительного их замыкания накоротко? Почему на напряжение выше 330 кВ изготавливаются ТТ каскадного типа? Об этом и об измерительном трансформаторе тока для подстанции 750 кВ вы узнаете из видео.