Как проверить источник опорного напряжения TL431. Источник опорного напряжения TL431 431 параметры

Добрый день, друзья!

Сегодня мы с вами познакомимся с еще одной «железкой», которая используется в компьютерной технике. Она применяется не так часто, как, скажем, или , но тоже достойна внимания .

Что это такое – источник опорного напряжения TL431?

В блоках питания персональных компьютеров можно встретить микросхему источника опорного напряжения (ИОН) TL431.

Можно рассматривать ее как регулируемый стабилитрон.

Но это именно микросхема, так как в ней помещено более десятка транзисторов, не считая других элементов.

Стабилитрон – это такая штуковина, которая поддерживает (стремится поддержать) постоянное напряжение на нагрузке. «А зачем это нужно?» – спросите вы.

Дело в том, что микросхемы, из которых состоит компьютер – и большие и малые – могут работать лишь в определенном (не очень большом) диапазоне питающих напряжений. При превышении диапазона весьма вероятен выход их из строя.

Поэтому в (не только компьютерных) применяются схемы и компоненты для стабилизации напряжения.

При определенном диапазоне напряжений между анодом и катодом (и определенном диапазоне токов катода) микросхема обеспечивает на своем выходе ref опорное напряжение 2,5 В относительно анода.

Используя внешние цепи (резисторы) можно варьировать напряжение между анодом и катодом в достаточно широких пределах – от 2,5 до 36 В.

Таким образом, нам не нужно искать стабилитроны на определенное напряжение! Можно просто изменять номиналы резисторов и получить нужное нам уровень напряжения.

В компьютерных блоках питания существует источник дежурного напряжения + 5VSB.

Если вилка блока питания вставлена в сеть, оно присутствует на одном из контактов основного питающего разъема — даже если компьютер не включен.

При этом часть компонентов материнской платы компьютера находится под этим напряжением .

Именно с помощью него и происходит запуск основной части блока питания – сигналом с материнской платы. В формировании этого напряжения часто участвует и микросхема TL431.

При выходе ее из строя величина дежурного напряжения может отличаться — и довольно сильно — от номинальной величины.

Чем это может нам грозить?

Если напряжение +5VSB будет больше чем надо, компьютер может «зависать», так как часть микросхем материнской платы питается повышенным напряжением.

Иногда такое поведение компьютера вводит неопытного ремонтника в заблуждение. Ведь он измерил основные питающие напряжения блока питания +3,3 В, +5 В, +12 В – и увидел, что они находятся в пределах допуска.

Он начинает копать в другом месте и тратит массу времени на поиск неисправности. А надо было просто измерить и напряжение дежурного источника!

Напомним, что напряжение +5VSB должно находиться в пределах 5% допуска, т.е. лежать в диапазоне 4,75 – 5,25 В.

Если напряжение дежурного источника будет меньше необходимого, компьютер может вообще не запуститься .

Как проверить TL431?

«Прозвонить» эту микросхему как обычный стабилитрон нельзя.

Чтобы убедиться в ее исправности, нужно собрать небольшую схему для проверки.

При этом выходное напряжение в первом приближении описывается формулой

Vo = (1 + R2/R3) * Vref (см даташит*), где Vref — опорное напряжение, равное 2,5 В.

При замыкании кнопки S1 выходное напряжение будет иметь величину 2,5 В (опорное напряжение), при отпускании ее – величину 5 В.

Таким образом, нажимая и отжимая кнопку S1 и измеряя сигнал на выходе схемы, можно убедиться в исправности (или неисправности) микросхемы.

Проверочную схему можно сделать в виде отдельного модуля, используя 16-контактный разъем для DIP-микросхемы с шагом выводов 2,5 мм. Питание и щупы тестера подключаются при этом к выходным клеммам модуля.

Для проверки микросхемы нужно вставить ее в разъем, понажимать кнопку и посмотреть на дисплей тестера.

Если микросхема не вставлена в разъем, выходное напряжение будет равным примерно 10 В.

Вот и все! Просто, не правда ли?

*Даташит – это справочные данные (data sheets) на электронные компоненты. Их можно найти поисковиком в Интернете.

С вами был Виктор Геронда. До встречи на блоге!

Электронный компонент tl 431 - это одна из интегральных микросхем, чьё производство поставлено на массовый поток, начиная, с 1978 года. Она широко используется в большинстве компьютерных блоков питания, телевизоров и другой бытовой технике в качестве прецизионного программируемого источника опорного напряжения. На практике сложилось несколько схем включения tl431.

Устройство электронного элемента

Микросхема обладает простой конструкцией, состоящей из следующих элементов: корпуса, операционного усилителя (ОУ), выходного tl431 транзистора, а также источника опорного напряжения. Особенностью этой микросхемы является то, что она выполняет функции стабилитрона.

Источник опорного напряжения на 2.5 вольта, обладающий высокой стабильностью, подключается к инверсному входу ОУ (-), эмиттеру транзистора и землёй с помощью двух общих точек в цепь опорного напорного также включён кремниевый диод. Он предназначен для предотвращения создания обратного тока и защищает от переполюсовки. Прямой вход ® предназначен для приёма сигнала с других плат, а также питания усилителя. Он подключается через диод к коллектору транзистора также через общую точку. Выход ОУ подключён к базе транзистора.

Следует помнить, что транзистор, используемый в микросхемах данной серии, способен выдержать нагрузки до 0.1 А и 36 В.

Принцип работы

Работа микросхемы основана на принципе превышения напряжения поданного на прямой вход ОУ над опорным. При U (напряжении на прямом входе) меньше или равным Vref (опорном напряжении на выходе) будет подобное низкое напряжение, из-за чего транзистор не откроется, а ток по цепи анод-катод не будет поступать. Как только U превысит Vref на выходе ОУ, образуется напряжение, способное открыть транзистор и заставить ток протекать от катода к аноду, что заставляет микросхему работать.

Цоколёвка tl341

TL 341 представляет собой трёхвыводную микросхему. Каждая ножка имеет собственное название 1 - reference (выход), 2 - anode (анод) и 3 - catode (катод).

На практике цоколёвка бывает различной и зависит от типа корпуса выбранного производителем при изготовлении изделия. TL431 выпускается в большом количестве разных корпусов, от древних TO-92 до современных SOT-23. Распиновка tl431 в зависимости от вида корпуса изображены на рисунке 3.

Аналогами tl431 отечественного производства являются микросхемы КР142ЕН19А и К1156ЕР5Т. К зарубежным аналогам можно отнести:

  • KA431AZ;
  • KIA431;
  • HA17431VP;
  • IR9431N;
  • AME431BxxxxBZ;
  • AS431A1D;
  • LM431BCM.

Технические характеристики

Основными техническим характеристиками микросхемы tl 341 являются:

Из характеристик видно, что микросхему можно использовать при довольно обширном диапазоне напряжения, однако пропускная способность по току весьма невелика. Чтобы получить более серьёзные, к катодной цепи подключают мощные транзисторы, которые регулируют выходные параметры.

Схемы включения

Микросхема tl 431 представляет собой стабилитрон интегрального типа. Она обладает тремя схемами включения:

  • на 2.48 В (1);
  • на 3, 3 В (2);
  • на 14 В.

Вариант 1: схема на 2,48 В.

Схема включения стабилитрона на 2.48 вольта оснащена одноступенчатым преобразователем. Среднее значение рабочего тока в подобной системе составляет 5.3 А. К выводу ref (цепь опорного напряжения) монтируется цепь, состоящая из двух параллельно соединённых резисторов (по 2.4 и 2.26 кОм). На эти резисторы предварительно подаётся напряжение равное 5 В, которое после прохождения цепи превращается в 2,48.

С целью повышения чувствительности стабилитрона применяются разнообразные модуляторы, в основном, дипольного типа с ёмкостью менее 3 пФ (пикофарад). Стабилитроны подключают к катоду.

Вариант 2: схема включения на 3,3 В.

В схеме включения на 3,3 В также используется одноступенчатый преобразователь и резистор на 1 кОм, подключённый к катоду. Перед сопротивлением ставится сторонний источник питания на 3 В. К выводу (ref) подключается конденсатор ёмкостью 10 нФ, соединённый с землёй. Анод в подобной схеме сажается напрямую на землю, а катодная и входная цепи соединяются двумя общими точками.

Проблемой этой схемы включения является большая вероятность возникновения короткого замыкания (КЗ). Для того чтобы снизить риск возникновения КЗ, после стабилитронов монтируют предохранитель.

Чтобы усиливать сигнал к выводу подключают специальные фильтры. В такой схеме включения средние показатели напряжения и тока составляют 5 В/ 3.5 А, а точность стабилизации менее 3%. Стабилитрон подключается через векторный переходник поэтому нужно подбирать транзистор резонного типа Средняя ёмкость модулятора должна составлять 4.2 пФ. Для увеличения проводимости тока можно использовать триггеры.

Независимые устройства на базе микросхемы

Эту микросхему используют в блоках питания телевизоров и компьютером. Однако на её базе можно составить независимые электрические схемы некоторыми, из которых являются:

  • стабилизатор тока;
  • звуковой индикатор.

Стабилизатор тока

Стабилизатор тока - это одна из самых простых схем, которые можно реализовать на микросхеме tl 341. Он состоит из следующих элементов:

  • источника питания;
  • сопротивления R 1, подключённого с помощью общей точки к + линии питания;
  • шунтирующего сопротивления R 2 к - линии питания;
  • транзистора, чей эмиттер подключён к - линии через резистор R 2, коллектор к выходу - линии, а база через общую точку к катоду микросхемы;
  • микросхемы tl 341, чей анод подключён к - линии с помощью общей токи, а вывод ref включён в эмиттерную цепь транзистора также с помощью общей точки.

Основную роль в данной схеме выполняет шунтирующий резистор R 2, который за счёт обратной связи устанавливает значение, напряжение равное 2,5 В. Из-за этого выходной ток будет принимать следующий вид: I=2,5/R2.

Звуковой индикатор

Звуковой индикатор на базе tl 341 представляет собой простую схему, изображённую на рисунке 5

Такой звуковой индикатор можно использовать для отслеживания уровня воды в какой-либо ёмкости. Датчик представляет собой электронную схему в корпусе с двумя выводными электродами, изготовленными из нержавеющей стали, один из которых расположен на 20 мм выше другого.

В момент соприкосновения выводов датчика с водой происходит снижение сопротивления и осуществляется переход tl 341 в линейный режим через резисторы R 1и R 2. Это способствует появлению автогенирации на резонансной частоте и образованию звукового сигнала.

Проверка работоспособности с помощью мультиметра

Вопросом о том, как проверить tl431 с помощью мультиметра, задаются многие. Ответ на него достаточно прост для того, чтобы проверить микросхему tl341 или её модификации tl431a необходимо выполнить следующие действия:

  1. Собрать простую тестовую схему с использованием микросхемы и ключа.
  2. Замкнуть цепь переключателя и провести измерения. Мультиметр должен показывать значение опорного напряжения - 2,5 В.
  3. Разомкнуть цепь и провести измерения. На дисплее измерительного прибора должно быть 5 В.

Выпуск интегральной микросхемы начался с далекого 1978 года и продолжается по сегодняшний день. Микросхема дает возможность изготовить различные виды сигнализации и зарядные устройства для повседневного применения. Микросхема tl431 нашла широкое применение в бытовых приборах: мониторах, магнитофонах, планшетах. TL431 - это своего рода программируемый стабилизатор напряжения.

Схема включения и принцип работы

Принцип работы довольно прост. В стабилизаторе есть постоянная величина опорного напряжения , и если подаваемое напряжение меньше этого номинала, то транзистор будет закрыт и не допустит прохождение тока. Это отчетливо можно наблюдать на следующей схеме.

Если же эту величину превысить, регулируемый стабилитрон откроет P-N переход транзистора, и ток потечет дальше к диоду, от плюса к минусу. Выходное напряжение будет постоянным. Соответственно, если ток упадет ниже величины опорного напряжения, управляемый операционный усилитель закроется.

Цоколевка и технические параметры

Операционный усилитель выпускается в разных корпусах. Изначально это был корпус ТО-92, но со временем его сменил более новый вариант SOT-23. Ниже изображена распиновка и виды корпусов начиная с самого «древнего» и заканчивая обновлённой версией.

На рисунке можно наблюдать, что у tl431 цоколевка изменяется в зависимости от типа корпуса. У tl431 имеются отечественные аналоги КР142ЕН19А, КР142ЕН19А. Существуют и зарубежные аналоги tl431: KA431AZ, KIA431, LM431BCM, AS431, 3s1265r, которые ничем не уступают отечественному варианту.

Характеристика TL431

Этот операционный усилитель работает с напряжением от 2,5 до 36В. Ток работы усилителя колеблется от 1А до 100 мА, но есть один важный нюанс: если требуется стабильность в работе стабилизатора, то сила тока не должна опускаться ниже 5 мА на входе. У тл431 имеется величина опорного напряжения, которая определяется по 6-й букве в маркировке:

  • Если буквы нет, то точность равняется - 2%.
  • Буква А в маркировке свидетельствует о - 1% точности.
  • Буква В говорит о - 0,5% точности.

Более развернутая техническая характеристика изображена на рис.4

В описании tl431A можно увидеть, что величина тока довольна мала и составляет заявленные 100мА, а величина мощности, которую рассеивают эти корпуса, не превышает сотен милливатт. Этого мало. Если предстоит работать с более серьезными токами, то будет правильнее воспользоваться мощными транзисторами с улучшенными параметрами.

Проверка стабилизатора

Сразу возникает уместный вопрос о том, как проверить tl431 мультиметром . Как показывает практика, одним мультиметром проверить не получится. Для проверки tl431 мультиметром следует собрать схему. Для этого понадобятся: три резистора (один из них подстроечный), светодиод или лампочка, источник постоянного тока 5В.

Резистор R3 необходимо подобрать таким образом, чтобы он ограничил ток до 20мА в цепи питания. Его номинал составляет примерно 100Ом. Резисторы R2 и R3 выполняют роль балансира. Как только напряжение будет 2,5 В на управляющем электроде, то переход светодиода откроется, и напряжение пойдет через него. Эта схема хороша тем, что светодиод выполняет роль индикатора.

Источник постоянного тока - 5В является фиксированным, а управлять микросхемой tl431 можно с помощью переменного резистора R2. Когда питание на микросхему не подается, то диод не горит. После того как сопротивление изменяется при помощи подстроечного резистора, светодиод загорается. После этого мультиметр нужно включить в режим измерения постоянного тока и замерить напряжение на управляющем выводе, которое должно составлять 2,5. Если напряжение присутствует и светодиод горит, то элемент можно считать рабочим.

На базе операционного усилителя тока tl431 можно создать простой стабилизатор. Для создания нужной величины U этого понадобятся три резистора. Необходимо высчитать номинал запрограммированного напряжения стабилизатора. Расчет можно произвести при помощи формулы: Uвых=Vref(1 + R1/R2). Согласно формуле U на выходе зависит от величины R1 и R2. Чем больше сопротивление R1 и R2, тем ниже напряжение выходного каскада. Получив номинал R2, величину R1 можно высчитать следующим образом: R1=R2(Uвых/Vref – 1). Регулируемый стабилизатор возможно включить тремя способами.

Необходимо учесть немаловажный нюанс: сопротивление R3 можно рассчитать по той формуле, по которой рассчитывался номинал R2 и R2. В выходной каскад не стоит устанавливать полярный или неполярный электролит, во избежание помех на выходе.

ЗУ для мобильного телефона

Стабилизатор можно применить как своеобразный ограничитель тока. Это свойство будет полезным в устройствах для зарядки мобильного телефона.

Если напряжение в выходном каскаде не достигнет 4,2 В, происходит ограничение тока в цепях питания. После достижения заявленных 4,2 В стабилизатор уменьшает величину напряжения - следовательно, падает и величина тока. За ограничение величины тока в схеме отвечают элементы схемы VT1 VT2 и R1-R3. Сопротивление R1 шунтирует VT1. После превышения показателя в 0,6 В элемент VT1 открывается и постепенно ограничивает подачу напряжения на биполярный транзистор VT2.

На базе транзистора VT3 резко уменьшается величина тока. Происходит постепенное закрытие переходов. Напряжение падает, что приводит к падению силы тока. Как только U подходит к отметке 4,2 В, стабилизатор tl431 начинает уменьшать его величину в выходных каскадах устройства, и заряд прекращается. Для изготовления устройства необходимо использовать следующий набор элементов:

Необходимо обратить особое внимание на транзистор az431 . Для равномерного уменьшения напряжения в выходных каскадах желательно поставить транзистор именно az431, datasheet биполярного транзистора можно наблюдать в таблице.

Именно этот транзистор плавно уменьшает напряжение и силу тока. Вольт-амперные характеристики этого элемента хорошо подходят для решения поставленной задачи.

Операционный усилитель TL431 является многофункциональным элементом и дает возможность конструировать различные устройства: зарядные для мобильных телефонов, системы сигнализации и многое другое. Как показывает практика, операционный усилитель обладает хорошими характеристиками и не уступает зарубежным аналогам.

В этой статье мы узнаем, как работает интегральный стабилизатор напряжения TL431, в регулируемых блоках питания.

Технически TL431 называется программируемым шунтирующим регулятором, простыми словами это может быть определено как регулируемый стабилитрон. Давайте рассмотрим его спецификацию и указания по применению.

Стабилитрон TL431 имеет следующие основные функции:

  • Выходное напряжение устанавливается или программируется до 36 вольт
  • Низкое выходное сопротивление около 0,2 Ома
  • Пропускная способность до 100 мА
  • В отличие от обычных диодов Зенера, генерация шума в TL431 незначительна.
  • Быстрое переключение.

Общее описание TL431

TL431 — регулируемый или программируемый регулятор напряжения.
Необходимое выходное напряжение может быть установлено с помощью всего двух внешних (делитель напряжения), подключенных к выводу REF.

На приведенной ниже схеме показана внутренняя структурная схема устройства, а также PIN-код обозначения.

Распиновка TL431

Схема включения стабилитрона TL431

Теперь давайте посмотрим, как этот прибор может быть использован в практических схемах. Схема ниже показывает, как можно использовать TL431 в роли обычного регулятора напряжения:

Приведенный выше рисунок показывает, как с помощью всего пары резисторов и TL431 получить регулятор, работающий в диапазоне 2,5…36 вольт. R1 представляет собой переменный резистор, который используется для регулировки выходного напряжения.

Следующая формула справедлива для вычисления сопротивлений резисторов, в случае если мы хотим получить какое-то фиксированное напряжение.

Vo = (1 + R1/R2)Vref

При совместном применении стабилизаторов серии 78xx (7805,7808,7812..) и TL431 можно использовать следующую схему:

TL431 катод соединен с общим выводом 78xx. Выход 78xx подключен к одной из точки резисторного делителя напряжения, который определяет выходное напряжение.

Вышеуказанные схемы использования TL431 ограничены выходным током 100 мА максимум.

Для получения более высокого выходного тока может быть использована следующая схема.

В приведенной выше схеме большинство компонентов схожи с обычным регулятором, приведенным выше, за исключением того, что здесь катод подключен к плюсу через резистор и к их точке соединения подсоединена база буферного транзистора. Выходной ток регулятора будет зависеть от мощности данного транзистора.

Области применения TL431

Выше изложенные варианты применения TL431 могут быть использована в любом месте, где требуется точность настройки выходного напряжения или опорного напряжении. В настоящее время это широко используется в импульсных источниках питания для генерации точного опорного напряжения.

(скачено: 846)

Сразу оговорюсь, что данная статья не панацея. У кого-то это может не пройти.

Для начала я расскажу о TL431, и для чего она служит. TL431 это управляемый стабилитрон с помощью которого можно получить стабилизированное напряжения в широких пределах от 2,5 вольта до 36 вольт. Применяя эту микросхему можно сделать источник опорного напряжения для блоков питания, а также для различных измерительных схем.

Рисунок взят из даташита компании ON Semiconductor

Ниже приведены два варианта даташит для этой микросхемы

  1. Даташит компании ON Semiconductor https://www.onsemi.com/pub/Collateral/TL431-D.PDF
  2. Даташит компании Texas Instruments http://www.ti.com/lit/ds/symlink/tl431.pdf

Цоколевка этой микросхемы наилучшим образом отображена в даташите компании ON Semiconductor

В даташите Texas Instruments обнаружена одна небольшая деталь

На всех рисунках есть одна надпись «top view» это переводится как «вид сверху» при невнимательном просмотре даташит, не зная, что это может обозначать, можно неправильно распаять на плате.

В одной из своих схем я применил микросхему TL431, и она оказалась неисправной. Поискав по форумам я нашел способ проверки этой микросхемы. А в некоторых местах я видел как вызванивают эту микросхему с помощью мультиметра но, увы, все это не то. Я тоже сначала попытался проверить мультиметром но сразу отложил в сторону это мероприятие. И решил попробовать проверить с помощью универсального тестера компонентов , который был ранее приобретен на алиэкспресс.

Во время проверки составил таблицу. Сначала проверил в режиме двухполюсника (если в таблице указаны два вывода, просто необходимо объединить оба вывода вместе).

Результаты измерения первого экземпляра

анод, катод

Измерение 1 – REF; 2 - катод.

Измерение 1 – анод; 2 - катод.

Измерение 1 - REF, катод; 2 – анод.

Измерение 1 – REF; 2 – катод, анод.

Измерение 1 – REF, 2 – анод, 3 – катод.

Результаты измерения второго экземпляра.

анод, катод

Небольшая разница присутствует. Глядя на таблицу замечаешь определенную закономерность. Например, в 4 строке это фактически режим работы TL431 для получения 2,5 вольта. Но самое интересное режим измерения в режиме трехполюсника. В одном случае определяется как транзистор, а во втором случае как отсутствует деталь. Самое интересное в случае когда транзистор определяется: определятся транзистор структуры NPN, вывод REF определятся как эмиттер, анод как база, а катод как коллектор. Между REF и катодом диод катод, которого направлен в сторону катода.

На основании этих данных уже можно судить исправлена микросхема или нет, а также определить цоколевку.