Холодная прокатка. Агрегаты рельсобалочных станов

Горячая прокатка начинается с предварительного нагрева слябов (в зависимости от их размеров, марки стали и назначения) в методических нагревательных печах, отапливаемых смешанным природно-доменным газом.

Нагретые слябы выдают на приёмный рольганг стана и транспортируют к черновой группе клетей. В черновой группе клетей сляб проходит, так называемую, «черновую» (начальную) обработку, прокатываясь последовательно в каждой клети до нужной промежуточной толщины. Для обжатия раската по ширине клети оборудованы вертикальными валками. Окалину с поверхности раската удаляют специальными приспособлениями (гидросбивами), которые струёй воды под давлением очищают поверхность металла.

Из черновой группы клетей раскат транспортируют по промежуточному рольгангу к чистовой группе клетей, где производят «чистовую» (окончательную) прокатку до конечной (заданной) толщины полосы.

После выхода из последней клети стана полосу транспортируют по отводящему рольгангу, где металл для обеспечения необходимых механических свойств и соблюдения температурного режима смотки охлаждается (душируется) водой с помощью установки ускоренного охлаждения полосы. После прокатки толщина металла составляет от 1,5 мм до 16 мм.

Прокатанные горячекатаные полосы сматываются на моталках. Часть продукции отправляется в отделение отделки, для порезки и подготовки к отгрузке, остальная продукция передаётся для дальнейшей обработки в цеха холодной прокатки.

Горячий прокат применяется при изготовлении нефтегазопроводов (включая трубопроводы, рассчитанные на эксплуатацию при низких температурах и под высоким давлением), в судостроении, строительстве и изготовлении сосудов, работающих под высоким давлением.

5.2 Производство холоднокатаного проката

Основными видами холоднокатаного проката, выпускаемого на комбинате и применяемого в различных отраслях промышленности, являются: холоднокатаный прокат без покрытия, холоднокатаный прокат оцинкованный, холоднокатаный прокат с полимерным покрытием, холоднокатаная электротехническая анизотропная (трансформаторная) сталь, холоднокатаная электротехническая изотропная (динамная) сталь.

Холоднокатаный прокат без покрытия используется для изготовления кузовов автомобилей, тракторов и комбайнов, металлоконструкций, штампованных изделий, корпусов электробытовых приборов, кровли и отделки.

Холоднокатаный оцинкованный прокат используется для производства гнутых профилей, строительных металлоконструкций, автомобильных деталей и компонентов электробытовых приборов.

Холоднокатаный прокат с полимерным покрытием, обладая высокой устойчивостью к атмосферной коррозии, имея декоративный вид и сочетая в себе прочность и пластичность, используется для изготовления строительных металлоконструкций, корпусов приборов, электробытовых приборов, кровельной черепицы и т.д.

Основной областью применения холоднокатаной электротехнической анизотропной (трансформаторной) стали является производство силовых трансформаторов. Холоднокатаная электротехническая изотропная (динамная) сталь предназначена для изготовления электрических машин с вращающимися магнитопроводами:

электродвигателей, генераторов. Качество и уровень магнитных свойств этих сталей определяет основные эксплуатационные характеристики электротехнических изделий. В процессе производства электротехнических сталей (анизотропной и изотропной), для получения требуемых свойств готовой электротехнической стали, горячекатаные рулоны проходят через несколько сложных этапов холодной прокатки, отжига и нанесения покрытий.

Все указанные виды холоднокатаного проката производятся в подразделениях комбината: Производстве холодного проката и покрытий (ПХПП), Производстве динамной стали (ПДС) и Производстве трансформаторной стали (ПТС).

5.2.1 Производство холодного проката и покрытий

Производство холодного проката и покрытий (ПХПП) представляет собой цех холодной прокатки углеродистых сталей, предназначенный для производства холоднокатаного проката стали без покрытия, а также с покрытием (оцинкованным, полимерным), являющимся товарной продукцией ОАО «НЛМК», отгружаемой потребителю.

Исходной заготовкой для производства холоднокатаного проката является горячекатаный подкат, поступающий из ПГП.

Процесс производства холоднокатаного проката состоит из последовательности переделов, таких как травление горячекатаного подката, холодная прокатка, термическая обработка холоднокатаного проката, нанесение цинкового покрытия, дрессировка, нанесение лакокрасочного (полимерного) покрытия, резка проката на агрегатах резки. Маршрут обработки металла на указанных переделах определяется в зависимости от вида конечного продукта.

Травление горячекатаного подката в кислотном растворе производят в агрегатах непрерывного травления (НТА) перед холодной прокаткой для очистки поверхности металла и удаления окалины.

Следующий после травления горячекатаного подката передел – холодная прокатка, осуществляемая на 5-ти клетевом стане 2030 бесконечной холодной прокатки, особенностью которой является непрерывность процесса, что достигается путём последовательного сваривания отдельных полос, смотанных в рулоны, в одну «бесконечную» полосу.

После холодной прокатки полосы, смотанные в рулоны, для приобретения пластичности и получения необходимых механических свойств подвергаются термической обработке – отжигу в колпаковых печах или в протяжных печах агрегата непрерывного отжига (АНО) и агрегатов непрерывного горячего цинкования (АНГЦ). Во время отжига структура холоднодеформированного металла перестраивается (рекристаллизуется). Общая продолжительность отжига в колпаковых печах может составлять несколько суток, в зависимости от массы рулонов, марки стали, толщины полосы. Отжиг в печах АНО и АНГЦ происходит по непрерывной технологии за счёт прохождения полосы через печь, состоящую из нескольких секций, в каждой из которых поддерживаются определённые тепловые режимы, длительность отжига одного рулона при этом составляет несколько десятков минут. При производстве оцинкованного проката в АНГЦ, после термической обработки металла в печи, на поверхность полосы наносится цинковое покрытие.

Для улучшения конечных свойств и качества поверхности, металл после отжига в колпаковых печах проходит обработку на дрессировочных станах,

Разработчик специалист методического бюро ЦКО УПРП

а технология обработки отожжённого в АНО и оцинкованного в АНГЦ металла предусматривает дрессировку (холодная прокатка с небольшим обжатием) непосредственно в линии агрегатов.

Для придания декоративных свойств, а также дополнительной защиты проката от коррозии холоднокатаный или оцинкованный прокат обрабатывают в агрегатах полимерных покрытий (АПП), где на поверхность полосы наносят лакокрасочные (полимерные) покрытия.

Готовая продукция отгружается потребителям в рулонах, в листах и ленте. Для этого рулоны направляют на агрегаты продольной и поперечной резки, где они проходят обработку в соответствии с заказами потребителей.

5.2.2 Производство трансформаторной стали

Производство трансформаторной стали (ПТС) представляет собой цех холодной прокатки электротехнической стали, предназначенный для производства холоднокатаного проката электротехнической трансформаторной (анизотропной) стали, являющейся товарной продукцией ОАО «НЛМК», отгружаемой потребителю.

Для производства электротехнической трансформаторной (анизотропной) стали используют горячекатаный подкат из ПГП выплавки Конвертерного цеха №1.

В процессе сложного производства электротехнической трансформаторной (анизотропной) стали металл проходит последовательно несколько этапов различных видов обработки, некоторые из которых в Производстве динамной стали (ПДС).

Поступающий из ПГП горячекатаный подкат подвергают травлению в растворе соляной кислоты в агрегате травления проталкиванием (АТП) травильного комплекса ПТС (или ПДС), после чего протравленные горячекатаные полосы прокатывают на промежуточную толщину на 4-х клетевом стане 1400 ПДС (первая холодная прокатка).

Подготовленный после холодной прокатки на агрегатах подготовки холоднокатаных рулонов (ПДС) холоднокатаный прокат поступает на агрегаты непрерывного отжига АНО ПТС (или АНО ПДС) для обезуглероживающего отжига в увлажнённой азотно-водородной атмосфере, проводимого с целью снижения в стали содержания углерода, формирования требуемой структуры, химического состава поверхностного слоя металла. Процесс обезуглероживания совмещают с рекристаллизационным отжигом, проводимым для снятия напряжений в металле (возвращения пластичности) после холодной прокатки.

После обезуглероживающего отжига и последующей подготовки рулонов на агрегатах резки (ПТС или ПДС), заключающейся в обрезке боковых кромок, вырезке утолщённых участков, перемотке, проводят вторую холодную прокатку на конечную толщину (в зависимости от сортамента готовой продукции) на реверсивном стане или 20-ти валковом стане ПТС.

После второй холодной прокатки рулоны вновь проходят подготовку на агрегате резки (ПТС), заключающейся в удалении некондиционных по толщине концевых участков, стыковой сварке подмоток. Подготовленный на агрегатах резки после второй холодной прокатки металл поступает в агрегаты непрерывного отжига (АНО) (ПТС), где производят его обезжиривание и выпрямляющий отжиг.

Конструкция некоторых агрегатов АНО позволяет производить непосредственно в линии агрегата нанесение на поверхность полосы термостойкого покрытия, служащего для предотвращения сваривания витков рулона при последующем

высокотемпературном отжиге, а также для формирования грунтового слоя, который в дальнейшем, взаимодействуя с электроизоляционным раствором, образует электроизоляционное покрытие. Металл, обработанный на АНО без нанесения термостойкого покрытия, проходит дополнительную обработку в агрегатах защитных покрытий, где на поверхность полосы наносят термостойкое покрытие. В качестве термостойкого покрытия применяют водную суспензию оксида магния.

Далее металл, смотанный в рулоны, подвергают высокотемпературному отжигу, проводимому в колпаковых электрических печах в атмосфере чистого водорода или азотно-водородной смеси для формирования необходимой структуры и магнитных свойств готового проката.

Отожжённый в колпаковых печах металл поступает на агрегаты электроизоляционного покрытия, где производят очистку полосы от остатков оксида магния, нанесение и сушку электроизоляционного покрытия, и выпрямляющий отжиг металла для снятия рулонной кривизны (кривизны, копирующей форму рулона).

После обработки в агрегатах резки готовая продукция упаковывается и отгружается потребителям в рулонах, листах и ленте. При необходимости (наличии заказов от потребителей) производят обработку стали в линии лазерного технологического комплекса для улучшения магнитных свойств проката.

5.2.3 Производство динамной стали

Основной задачей Производства динамной стали (ПДС) является производство холоднокатаной динамной (изотропной) электротехнической стали для поставок на внутренний и внешний рынки.

Сырьём для производства динамной (изотропной) электротехнической стали являются смотанные горячекатаные рулоны выплавки Конвертерного цеха №1, поступающие из ПГП железнодорожным транспортом.

При производстве динамной (изотропной) электротехнической стали, с целью приобретения конечным продуктом требуемых механических и магнитных свойств, металл последовательно проходит несколько стадий обработки различных видов.

Схемы обработки металла выбирают в соответствии с химическим составом, геометрическими параметрами и требованиями заказчиков к свойствам готовой динамной стали.

Назначенные на обработку горячекатаные рулоны задают на агрегат подготовки горячекатаных рулонов для обрезки переднего и заднего концов, боковых кромок и удаления участков с дефектами предыдущих переделов.

Подготовленные горячекатаные полосы подвергают термической обработке в агрегате нормализации для улучшения магнитных свойств готового проката (часть проката - менее ответственного – обрабатывают без нормализации).

Далее горячекатаные рулоны, обработанные на агрегате нормализации и не подвергавшиеся нормализации, передают на непрерывно-травильный агрегат, на котором осуществляется очистка поверхности полос от окалины путём травления в растворе соляной кислоты.

Холодную прокатку на конечную толщину производят на 4-х клетевом стане 1400, после которой рулоны передают на агрегаты подготовки холоднокатаных рулонов для вырезки дефектных участков, обрезки концов и стыковой сварки отдельных полос.

Подготовленный холоднокатаный прокат задают в агрегат непрерывного отжига, где производят его термическую обработку (для достижения необходимых механических и магнитных свойств), а на поверхность наносят электроизоляционное лаковое покрытие, обладающее термо- и маслостойкостью, хладостойкостью, улучшающее штампуемость проката.

После получения результатов аттестационных испытаний магнитных и механических свойств, рулоны готовой динамной (изотропной) электротехнической стали подвергаются роспуску и обрезке кромок на агрегатах продольной резки на размеры в соответствии с заказами потребителей.

Помимо динамной стали, в ПДС производятся углеродистая и оцинкованная стали, в том числе с полимерным покрытием. Как было уже отмечено в предыдущем разделе, технология производства трансформаторной (анизотропной электротехнической) стали также предусматривает выполнение ряда технологических операций в ПДС.

6 РЕМОНТНОЕ ПРОИЗВОДСТВО

В состав Ремонтного производства входят специализированные производственные цеха, выпускающие оборудование, запасные части для проведения ремонтов основных металлургических агрегатов, грузоподъёмных машин.

Целью создания централизованного Ремонтного производства является наладка, обслуживание и восстановление производственных агрегатов и технологической оснастки.

7 ЭНЕРГЕТИЧЕСКОЕ ПРОИЗВОДСТВО

Энергетическое производство обеспечивает подразделения комбината электрической энергией, продуктами разделения воздуха (кислород, аргон, азот), теплоэнергией в паре и горячей воде, технической и питьевой водой, топливными газами, водородом и сжатым воздухом. В процессе производства используются следующие виды топлива: покупной природный и вторичные топливные газы металлургического производства (коксовый и доменный).

Выработку электроэнергии, теплоэнергии в паре и горячей воде, химически очищенной воды осуществляют Теплоэлектроцентраль и Утилизационная теплоэлектроцентраль.

Передачу и распределение электроэнергии, произведённой на комбинате и полученной отвнешних источников, осуществляет Центр электроснабжения.

Кислородный цех обеспечивает подразделения металлургического производства сжатым воздухом и продуктами разделения воздуха. Газоочистку и транспортировку доменного, коксового и природного газа осуществляетГазовый цех.

Передачу теплоэнергии в паре и горячей воде подразделениям комбината и производство химически очищенной воды осуществляетТеплосиловой цех.

Цех водоснабжения обеспечивает комбинат питьевой и технической водой, осуществляет водоотведение.

ГЛОССАРИЙ

АГЛОМЕРАТ м. 1.Кусковойматериал, продуктагломерации, сырье для чернойицветной металлургии. 2. Соединенные в более крупные образования частицы порошков, получаемые путёмадгезии,межчастичного схватывания илиагломерацииииспользуемыедляулучшениятехнологическихсвойствпорошков,например,прессуемости.

АНИЗОТРОПНАЯ (ТРАНСФОРМАТОРНАЯ) СТАЛЬ ж. Сталь с высоким содер-

жанием кремния и минимальным содержанием углерода и других примесей, обладает высокой однородностью магнитных свойств по различным направлениям в материале, служит для изготовления магнитопроводов, трансформаторов и других электрических устройств.

ГОРЯЧАЯПРОКАТКА ж. Деформацияпритемпературевышепорогарекристаллизации. ДОМЕННАЯ ПЕЧЬ м. Вертикально расположенная плавильная печь шахтного ти-

па для выплавки чугуна из железорудного сырья.

ДРЕССИРОВКА ж. Холоднаяпрокаткаотожженногометалласмалымобжатием(0,5-5%). ЖЕЛЕЗО с. Химический элемент, Fe, с атомной массой 55,84; относится к группе

чёрных металлов, t m 15390 С; важнейший металл современной техники, основа сплавов примерно 95% металлической продукции.

ИЗВЕСТНЯК м. Горная порода, состоящая главным образомиз кальцита, сырье для производстваизвести,флюсующаядобавка.

ИЗОТРОПНАЯ (ДИНАМНАЯ) СТАЛЬ ж. Сталь с содержанием кремния в пределах 1,3-1,8% и минимальным содержанием углерода и других примесей. Обладает низкой однородностью магнитных свойств по различным направлениям в материале,служитдляизготовлениямагнитопроводовэлектрическихмашин.

КОВШм. :

промежуточный. Ковш небольшого объёма, используемый для регулирования скорости разливки металла из основного разливочного ковша; устанавливается между разливочнымковшомиформой,изложницейиликристаллизатором.

сталеразливочный. Ковш, предназначенный для приема жидкой стали из металлургического агрегата,транспортированияиразливкиеевизложницыиливкристаллизаторУНРС.

чугуновозный. Ковш, предназначенный для транспортирования жидкого чугуна от доменнойпечидомиксераилиотмиксерадосталеплавильногоагрегата.

шлаковозный . Ковш, предназначенный для транспортирования жидкого шлака от плавильногоагрегатавшлаковыйотвал,напереработкуит.д.

КОКС м. Твердый углеродистый остаток, получаемый при коксовании природных топлив (главным образом каменного угля), а также некоторых нефтепродуктов; используетсякактопливоивкачествевосстановителяметаллическихруд.

КОКСОВАНИЕ с. Химическая переработка природных топлив с нагревом без доступа воздуха для получения кокса, коксового газа и жидких побочных продуктов, являющихсяценнымхимическимсырьем.

КОКСОВЫЙ ГАЗ м . Горючий газ, образующийся в процессе коксования каменного угля. В состав газа кроме водорода, метана, оксидов углерода входят пары каменноугольной смолы, бензола, аммиака, сероводорода и др. Парогазовая смесь выделяющихся летучих продуктов отводится через газосборник для улавливания и переработки. Конденсаты объединяют и отстаиванием выделяют надсмольную воду (аммиачная вода) и каменноугольную смолу. Затем сырой коксовый газ последовательно очищают от аммиака и сероводорода, промывают поглотительным маслом (для улавливания сырого бензола и фенола), серной кислотой (для улавливания пиридиновых оснований). Очищенный коксовый газ используют в качестве топливадляобогревабатареикоксовыхпечейидлядругихцелей.

Алгоритм выбора режима обжатий

Алгоритм расчета включает в себя расчет усилий прокатки по клетям, выбор максимального и минимального усилия прокатки по клетям. На первом этапе обжатие выбирается одинаковым по всем клетям, дальше идет расчет усилия. В клети, где усилие максимально обжатие уменьшается на 0,001мм от исходного, а где усилие минимальное обжатие в клети увеличивается на туже величину.

h= h +0,001;

h= h -0,001;

H-абсолютное обжатие в клети,

h=h -h ;

h -входная толщина,

h -выходная толщина.

Связь h и P можно проследить из формул:

Р =р ср × b× l

где , следовательно:

Р =р ср × b× .

Блок-схема алгоритма расчета представлена на рис.1.


Блок-схема алгоритма выбора режима обжатий при


3. Ввод исходных данных

Количество клетей: 1-4.

Толщина подката, мм: 2-3.

Толщина полосы на выходе из клетей, мм: 0,5-0,55.

Ширина полосы, мм: 1130

Радиус рабочих валков, мм: 200-220.

Натяжение на разматывателе, МПа: 40

Межклетевое натяжение, МПа: 100-230 .

Натяжение на моталке, МПа: 30.

Коэффициенты для определения предела текучести металла в зависимости от упрочнения :

а = 34,6,

с = 0,6.

Коэффициенты трения по клетям стана находится в пределах:

.

Текст программы

Текст программы написан на языке программирования Quick BASIK. Программа предназначена для расчета усилия прокатки и других энергосиловых параметров прокатки.

Расчет параметров выполнен для прокатки в условиях стана 1400 ПДС НЛМК.

REM ***** BASIC *****



"задание текстовых констант

const s1="Ввод исходных данных"

const s2="Количество клетей..."

const s3="Толщина подката..."

const s4="Толщина полосы на выходе"

const s5="-ой клети"

const s6=",мм..."

const s7="Скорость прокатки, м/с..."

const s8="коэффициент учитывающий природу смазки"

const s9="кинематическая вязкость смазки при 50 градусах, мм2/с"

const s10="Радиус рабочих валков, мм..."

const s11="Шерховатость рабочих валков, мкм..."

const s12="длинна дуги контакта"

const s13="введите исходный предел текучести, МПа..."

const s14="введите коэффициент a"

const s15="введите коэффициент n"

const s16="введите натяжение на разматывателе, МПа..."

const s17="ширина полосы, ... мм"

const s18="диаметр опорных валков,... мм"

const s19="коэффициент трения в подшибниках опорных валков..."

const s20="передаточное число редуктора..."

const s21="КПД клети"

const s22="Мощность одного двигателя привода клети...кВТ"

const s23="максимальный крутящий момент на валу двигателя...кН*м"

const s24="ввод номинальной частоты вращения... об/мин"

const s25="ввод максимальной частоты вращения...об/мин"

const s26="запас прочности двигателя... %"

const s27="натяжение на выходе"

const s28="максимальное давление металла на валки, МПа..."

"описание простых переменных

"описание простых переменных

dim n As integer

dim i As integer

dim a1 As string

dim r, k50,ksm,x0,p0,d,b, mp,dtr,kpd,nmax,ndn,ndm,omgn,omgm,nkl,a,n1,pmax

dim Sheet As Object

dim Cell As Object

Sheet=thiscomponent.getcurrentcontroller.activesheet

"ввод количества клетей

n=Val(InputBox(s2,s1,"1"))

"описание массивов

dim h(n),dh(n),e(n),v(n),mu(n),rz(n),l(n),del(n),psred(n),mdop(n),eps(n),ksi0(n)

dim s02(n),ts0(n),ts1(n),sig(n),ksi(n),hn(n),p(n),mtr(n),tau(n),mpr(n),t0(n),t1(n),ip(n),omg(n),nv(n),mdv(n),ndv(n)

"ввод ширины подката

b=val(Inputbox(s17,s1,"1130")

"ввод толщины подката

h(0)=val(Inputbox(s3,s1,"2"))

"ввод толщины полосы по клетям

a1=s4+chr(13)+STR(i)+s5+s6

h(i)=Val(inputbox(a1,s1,"1.1"))

"ввод передаточного числа по клетям

a1=s20+chr(13)+STR(i)+s5

ip(i)=Val(inputbox(a1,s1,"1.737"))

"диаметр опорных валков

d=val(Inputbox(s18,s1,"1400"))

"радиус рабочих валков

r=val(Inputbox(s10,s1,"200"))

"шерховатость валков rz

a1=s11+chr(13)+STR(i)+s5+s6

rz(i)=Val(inputbox(a1,s1,"7.28"))

"ввод скорости прокатки

v(n)=val(Inputbox(s7,s1,"3.9"))

"ввод исходного предела текучести

s02(0)=val(Inputbox(s13,s1,"230"))

"ввод коэффициентов кривой наклепа

a=val(Inputbox(s14,s1,"34.6"))

n1=val(Inputbox(s15,s1,"0.6"))

"ввод коэффицента смазки

ksm=val(Inputbox(s8,s1,"1"))

"ввод кинематической вязкости смазки при 50 градусах

k50=val(Inputbox(s9,s1,"30"))

"ввод коэффицента трения подшипников опорных валков

mp=val(Inputbox(s19,s1,"0,003"))

"ввод КПД клети

kpd=val(Inputbox(s21,s1,"0.95")

"ввод натяжения на разматывателе

sig(0)=val(Inputbox(s16,s1,"40"))

"ввод натяжения по клетям

a1=s27+chr(13)+STR(i)+s5

sig(i)=Val(inputbox(a1,s1,"140"))

"ввод мощности двигателя

nmax=val(Inputbox(s22,s1,"2540")

"ввод запаса прочности двигателя

zp=val(Inputbox(s26,s1,"5")

"ввод максимального давления металла на валки

pmax=val(Inputbox(s28,s1,"26")

"ввод номинальной частоты вращения

ndn=val(Inputbox(s24,s1,"290")

"ввод максимальной частоты вращения

ndm=val(Inputbox(s25,s1,"650")

"Расчет обжатий по клетям

dh(i)=h(i-1)-h(i)

e(i)=(h(0)-h(i))/h(0)*100

eps(i)=(h(i-1)-h(i))/h(i-1)*100

v(i)=v(n)*h(n)/h(i)

mu(i)=(ksm*(1+0.5*rz(i)))*(0.07-((0.1*v(i)^2)/(2*(1+v(i))+(3*v(i)^2))))/(1+0.25*(sqr(k50))-(0.005*k50))

s02(i)=s02(0)+a*e(i)^n1

ts0(i)=1.15*s02(i-1)

ts1(i)=1.15*s02(i)

ksi0(i)=1-(sig(i-1)/ts0(i))

ksi(i)=1-(sig(i)/ts1(i))

m10: l(i)=sqr(r*dh(i)+x0^2)+x0

del(i)=(mu(i)*2*l(i))/dh(i)

hn(i)=(ksi0(i)/ksi(i)*h(i-1)^(del(i)-1)*h(i)^(del(i)+1))^(1/2/del(i))

psred(i)=((ksi0(i)*ts0(i)*h(i-1)/(del(i)-2))*((h(i-1)/hn(i))^(del(i)-2)-1)+(ksi(i)*ts1(i)*h(i)/(del(i)+2))*((hn(i)/h(i))^(del(i)+2)-1))/dh(i)

if (psred(i)-p0)/psred(i)>0.05 then

x0(i)=(psred(i)*r)/95000

p(i)=(psred(i)*l(i)*b)/1000000

"момент на преодоление трения в ПЖТ

mtr(i)=(p(i)*mp*dtr)/1000

"коэффициент плеча равнодействующей

tau(i)=2*(hn(i)-h(i))/dh(i)

"момент на приводных концах валков

t0(i)=sig(i-1)*h(i-1)*b/1000

t1(i)=sig(i)*h(i)*b/1000

mpr(i)=2*p(i)*tau(i)*l(i)+mtr(i)+((t0(i)-t1(i))*r/1000)

"момент на валу двигателя

mdv(i)=mpr(i)/kpd/ip(i)

"мощность подводимая к концам валков

omg(i)=v(i)/r*1000

nv(i)=omg(i)*mpr(i)

ndv(i)=mdv(i)*omg(i)*ip(i)

omgn=(2*3.14*ndn)/60

omgm=(2*3.14*mdn)/60

nkl=(2*nmax)-((2*nmax)*zp/100)

mdop(i)=nkl/(omg(i)*ip(i))

print i,l(i),s02(i),psred(i)

print p(i),mdv(i),mdop(i),ndv(i)

"вывод результатов расчета в таблицу Calc

"вывод режимов прокатки

" Занесения толщины подката

Cell=sheet.getCellByPosition (2,3)

Cell.SetValue h(0)

" Занесения номера клети

" Занесения толщины полосы

Cell.SetValue h(i)

" Занесение абсолютного обжатия

Cell.SetValue dh(i)

" Занесение относительного обжатия

Cell.SetValue eps(i)

" Занесение суммарного обжатия

Cell.SetValue e(i)

" Занесение натяжения на разматывателе

Cell=sheet.getCellByPosition (6,3)

Cell.SetValue sig(0)

" Занесение натяжения в клети

Cell.SetValue sig(i)

"вывод энергосиловых параметров

" Занесения номера клети

" Занесения длинны дуги контакта

Cell.SetValue l(i)

" Занесение предела текучести

Cell.SetValue s02(i)

" Занесение среднего давления

Cell.SetValue psred(i)

" Занесение усилия прокатки

Cell.SetValue p(i)

Cell=sheet.getCellByPosition (10,2+i)

Cell.SetValue p(i)

" Занесение момента на валу двигателя

Cell.SetValue mdv(i)

" Занесение номинального момента

Cell.SetValue mdop(i)

" Занесение мощности на валу двигателя

Cell.SetValue ndv(i)

Cell=sheet.getCellByPosition (8,2+i)

Cell.SetValue ndv(i)

" Занесение номинальной мощности двигателя

Cell=sheet.getCellByPosition (9,3)

Cell.SetValue nkl

Cell=sheet.getCellByPosition (9,4)

Cell.SetValue nkl

Cell=sheet.getCellByPosition (9,5)

Cell.SetValue nkl

Cell=sheet.getCellByPosition (9,6)

Cell.SetValue nkl

" Занесение максимального давления металла на валки

Cell=sheet.getCellByPosition (11,3)

Cell.SetValue pmax

Cell=sheet.getCellByPosition (11,4)

Cell.SetValue pmax

Cell=sheet.getCellByPosition (11,5)

Cell.SetValue pmax

Cell=sheet.getCellByPosition (11,6)

Cell.SetValue pmax

"Обнуление строки

Cell=sheet.getCellByPosition (1,3+i)

Cell.setstring ""

Cell=sheet.getCellByPosition (2,3+i)

Cell.setstring ""

Cell=sheet.getCellByPosition (3,3+i)

Cell.setstring ""

Cell=sheet.getCellByPosition (4,3+i)

Cell.setstring ""

Cell=sheet.getCellByPosition (5,3+i)

Cell.setstring ""

Cell=sheet.getCellByPosition (6,3+i)

Cell.setstring ""

"Обнуление строки

Cell=sheet.getCellByPosition (1,13+i)

Cell.setstring ""

Cell=sheet.getCellByPosition (2,13+i)

Cell.setstring ""

Cell=sheet.getCellByPosition (3,13+i)

Cell.setstring ""

Cell=sheet.getCellByPosition (4,13+i)

Cell.setstring ""

Cell=sheet.getCellByPosition (5,13+i)

Cell.setstring ""

Cell=sheet.getCellByPosition (6,13+i)

Cell.setstring ""

Cell=sheet.getCellByPosition (7,13+i)

Cell.setstring ""

Cell=sheet.getCellByPosition (8,13+i)

Cell.setstring ""

5. Результаты расчета.

Исходные данные:

Количество клетей в чистовой группе: 4.

Толщина полосы на входе в чистовую группу клетей, мм: 2,0.

Толщина полосы на выходе из чистовой группы клетей, мм: 0,5.

Ширина полосы, мм: 1130.

Радиус рабочих валков, мм: 200.

Коэффициенты для определения предела текучести металла в зависимости от упрочнения:

а = 34,6

Результаты расчета представлены в таблице 1, распределение обжатий по клетям показано на рис.2.

Таблица 1. Результаты расчета

Рис. 2. Распределение обжатия по клетям

Библиографический список

1. Коновалов Ю.В., Остапенко А.П., Пономарев В.И. Расчет параметров листовой прокатки. Справочник. - М.: Металлургия, 1986, 430 с.

2. Теория прокатки. Справочник/ А.И. Целиков, А.Д. Томленов, В.И. Зюзин и др.- М.: Металлургия, 1982.- 335 с.

3. Целиков А.И. Теория расчета усилия в прокатных станах. - М.: Металлургия, 1962 - 494 с.

Введение

Новолипецкий металлургический комбинат НЛМК является предприятием с полным металлургическим циклом.

Общая схема производства включает следующие переделы:

агломерационное производство;

коксохимическое производство;

доменное производство;

сталеплавильное производство;

прокатное производство.

Агломерационное и коксохимическое производства (АГП и КХП) являются производителями основных компонентов для доменного производства - агломерата и кокса.

Доменное производство (ДЦ-1, ДЦ-2) специализируется на выпуске чугуна, который является не только полуфабрикатом для сталеплавильного производства, но и товарной продукцией первого передела.

Сталь, получаемая в сталеплавильном производстве (КЦ-1, КЦ-2), производится в виде слябов. Стальные слябы в дальнейшем используются для производства проката, а также являются товарной продукцией второго передела. Прокатное производство представлено цехом горячей прокатки ПГП, и цехами холодной прокатки ПХПП, ПТС, ПДС. Сталь, прокатанная на стане 2000 (ПГП) (горячекатаный прокат), является товарной продукцией НЛМК третьего передела, и служит заготовкой в производстве холоднокатаного листа. Металлургической продукцией НЛМК с наиболее высокой добавленной стоимостью является холоднокатаный прокат. На комбинате освоены технологии, позволяющие производить холоднокатаный прокат с цинковым и полимерным покрытиями (ПХПП), а также прокат электротехнических марок стали (ПТС, ПДС).

Кроме выше перечисленных производств НЛМК включает в себя ряд подразделений, обеспечивающих работу комбината:

топливно-энергетический комплекс бесперебойно обеспечивает подразделения комбината энергоресурсами (электроэнергия, пар, вода, газ и т.д.);

ремонтный завод комбината обладает достаточной базой для ведения ремонтов металлургического оборудования;

строительно-ремонтный комплекс, который ведет строительные работы на территории комбината;

транспортная база (железнодорожный и автомобильный транспорт).

Технологическая схема представлена на рисунке 1.

Рисунок 1 - Технологическая схема производства

Сырьё, в виде рулонов горячекатаного металла, поступает из ПГП. Рулоны подаются на кантователь, где их переворачивают. После этого рулоны поступают на агрегат подготовки, на этом агрегате у листа обрезаются кромки и края. Далее металл третьей и четвёртой группы нормализуется на агрегате первичной подготовки. После подготовки металл проходит первичную обработку на травильном агрегате. Затем металл подаётся на газо-потребляющий агрегат, пройдя который металл, скатанный в рулоны, подаётся на четырёх клетьевой стан 1400. На стане металл проходит холодную прокатку и доводится до толщины 0,4-0,7 мм. Прокатанный металл поступает на агрегат продольной резки. Обработка на этом агрегате состоит в обрезании кромок и концов листа. Обработанный металл подаётся на агрегат для улучшения свойств металла, здесь производится обезуглероживание и другие операции. После этого агрегата металл готов к резке. Далее металл упаковывается в рулоны. Основная продукция - динамная сталь.

В данном курсовом проекте разрабатывается технология производства холоднокатаной полосы стали 08пс размером 0,7×1000 в цехе ПДС.

1.Технологический процесс производства исходной заготовки

1.1 Технические требования к заготовке

Горячекатаный подкат поступает в цех поплавочно, с сертификатами качества КЦ -1, КЦ -2 и сертификатом качества ПГП. Технология производства и химический состав стали марки 08пс соответствует технологической инструкции с учетом схем назначения на производство холоднокатаного проката в ПДС. Технологические параметры горячей прокатки также соответствуют технологической инструкции и технологическим картам на нагрев и прокатку металла на стане горячей прокатки НШС 2000.

Каждый рулон имеет четкую маркировку, указывающую номер плавки, марку стали, номер партии, размеры и массу рулона. Рулон обвязан по образующей упаковочной лентой. Прокат горячекатаный рулонный, поступающий в ПДС для дальнейшего передела, удовлетворяет требованиям технологических условий. Предельные отклонения по толщине подката, измеренной по центральной линии полосы должны удовлетворять следующим требованиям: (2,00 ± 0,12) мм, (2,30 ± 0,12) мм на 98 % длины полосы. Ширина должна быть от 1030 мм до 1310 мм. Предельные отклонения по ширине составляют +20 мм.

Поперечное сечение горячекатаной полосы симметричное, выпуклое, чечевицеобразное. Поперечная разнотолшинность, определяемая как разность между толщиной в середине полосы и толщиной на расстоянии 40 мм от более тонкой необрезанной кромки, не должна превышать 0,01-0,06 мм. Допускаемые смещения выпуклости от осевой линии полосы не должно превышать 100 мм.

Клиновидность полосы, определяемая как разность толщин, измеренных на расстоянии не менее 40 мм от левой и правой кромок не превышает 0,03 мм.

Максимальная высота местных утолщений, представляющих собой узкие от 50 мм до 250 мм возвышения профиля поперечного сечения полосы в продольном направлении не превышает 0.01 мм. Величина местных утолщений определяется как разность между максимальной толщиной местного утолщения и полусуммой толщин в его основании.

Отклонение от плоскостности горячекатаных полос не должно превышать 15 мм, с шагом не менее 600 мм. Серповидность полос - не более 3 мм на длине один погонный метр. Телескопичность рулонов не более 50 мм. Выступание отдельных витков рулона - не более 15 мм.

Рванины на кромках не должны превышать половины поля допуска по ширине и выводить полосу за номинальный размер по ширине. Полосы не имеют скрученных, смятых концов и складок. Допускаются в отдельных местах загнутые кромки под углом не более 90°. Поверхность полосы без трещин, расслоений, плен, пузырей, вкатанной окалины. Риски, отпечатки, царапины не превышают половины суммы предельных отклонений по толщине.

Рулоны обвязаны по образующей на обвязочной машине. Неплотная смотка полосы (распущенный рулон) не допускается.

1.2 Технология производства исходной заготовки

Производство слябов осуществляется путем разливки жидкой стали на установках непрерывной разливки стали (УНРС).

Установка непрерывной разливки стали - агрегат, который позволяет разливать жидкий металл в твердые заготовки заданного сечения - прямоугольного (слябы), квадратного (блюмы), круглого или профилированного (круг, тавр, двутавритд.). Готовые слябы при помощи роликового конвейера (рольганга) подаются на склад, где проходят контроль качества, и обработку, обеспечивающую удаление выявленных дефектов. Затем слябы отгружают в цех горячей прокатки (ПГП). Схема НШПС 2000 представлена на рисунке 2.

Рисунок 2 - Схема расположения основного оборудования стана 2000

В ПГПП всё механическое оборудование сгруппировано в пять планово-монтажных групп: печная, черновая, чистовая, уборочная, общее оборудование стана. Слябы подаются кранами на загрузочные устройства и транспортируются к загрузочному столу, откуда при помощи сталкивателя подаются на загрузочный рольганг, который перемещает их к одной из печей. Перемещение сляба по рольгангу ограничено упором. Далее толкателем сляб задвигается в нагревательную методическую печь. Нагретые слябы выгружаются приёмный рольганг с помощью приёмника. С загрузочного рольганга слябы с помощью подъёмного стола, толкателя, передаточной тележки могут подаваться на загрузочный стол, а оттуда - прямо на приёмный рольганг. С помощью сталкивателя при необходимости сляб подаётся в обратном направлении на загрузочный рольганг. Приёмный рольганг транспортирует нагретые слябы к черновой группе.

После чернового окалиноломателя и двухвалковой клети сляб поступает на рольганг черновых клетей, в каждой из которых осуществляется один пропуск металла. Далее металл, прокатанный в черновой группе клетей, промежуточным рольгангом подаётся к летучим ножницам перед чистовой группой клетей, которые обрезают передний и задний концы подката, придавая им шевронную и ровную форму соответственно. Чистовая группа клетей состоит из чистового окалиноломателя и семи последовательно расположенных 4-валковых клетей с направляющими устройствами и петле держателями между ними. После выхода из последней клети полоса по отводящему рольгангу поступает на моталки для сматывания в рулон. Моталки работают поочерёдно в связи с тем, что после смотки полосы в рулон необходимо некоторое время для выгрузки его из моталки, обвязки и передачи на конвейер, потом на подъёмно-поворотный стол для последующей передачи в ПХПП, ПДС и ПТС или в участок отделки металла (УОМ) ПГП.

Технологическая схема производства проката в ПГП представлена на рисунке 2.

прием слябов

Отгрузка готовой продукции

Рисунок 3 - Технологическая схема производства проката в ПГП

1.3 Анализ дефектов заготовки

Анализ дефектов поверхности и формы горячекатаных полос, рулонов приведен в таблице 1.

Таблица 1 - Анализ дефектов заготовки

ТерминыОпределенияДефекты поверхности горячекатаной полосы и листа. Дефекты поверхности, образовавшиеся в процессе прокатки.Прокатная пленаДефект поверхности, представляющий собой отслоение металла языкообразной формы, соединенное с основным металлом, образовавшееся вследствие раската участка с механическими повреждениями. Примечание - На микрошлифе в зоне дефекта может наблюдаться окалина, металл обезуглерожен.ПродирДефект поверхности в виде широких продольных углублений, образующихся от резкого трения полосы о детали прокатного стана и подъемно-транспортного оборудования.Рванина на кромкаДефект поверхности в виде разрыва металла по кромкам полосы, образовавшихся из-за нарушения технологии прокатки, а также при прокатке стали на которой невозможно получить технологическую пластичность.ОтпечаткиДефект поверхности, представляющий собой углубления или выступы, расположенные по всей поверхности или на отдельных ее участках, образовавшиеся от выступов или углублений на прокатных валках и транспортирующих роликах.Сетка отпечатковДефект поверхности в виде периодически повторяющихся, имеющих форму сетки выступов, образующихся от вдавливания прокатываемого металла в трещины изношенных валков.Сквозные разрывыДефект поверхности в виде сквозных несплошностей полосы, образующихся при прокатке металла неравномерной толщины или с вкатанными инородными телами. Примечание - Причиной неравномерной толщины металла может быть зачистка дефектов на глубину, превышающую допуск, наличие рыхлости и поперечная разнотолщинность.Перегрев поверхностиДефект поверхности в виде крупнозернистой структуры, сопровождаемой грубой шероховатостью, рыхлой окалиной и сеткой трещин по границам крупных кристаллов, образующейся при превышении температуры и времени нагрева перед прокаткой.Вкатанные металлические частицыДефект поверхности полосы в виде приварившихся и частично закатанных кусочков металла. Примечание - К вкатанным частицам относятся: стружка, отслой от рваных кромок полосы и др.ВмятиныДефект поверхности в виде произвольно расположенных углублений различной формы, образовавшихся вследствие повреждения и ударов поверхности при транспортировке, правке, складировании и других операциях.РискаДефект поверхности, представляющий собой продольные углубления с закругленным или плоским дном, образовавшиеся от царапанья поверхности металла на прокатной арматуре. Примечание - Дефект не сопровождается изменением структуры и неметаллическими включениями.ЦарапинаДефект поверхности, представляющий собой углубление неправильной формы и произвольного направления, образовавшегося в результате механических повреждений, в т.ч. при складировании и транспортировании металла.Вкатанная окалинаДефект поверхности в виде вкраплений остатков окалины, вдавленной в поверхность металла при прокатке. Примечание - Дефект образуется в результате нарушения режима нагрева слябов, неудовлетворительное состояние гидросбивов и эксплуатация некачественных валков.

2. Технологический процесс производства заданного вида продукции

1 Профильный и марочный сортамент, наименования и требования стандартов к форме, размерам и качеству поверхности, структуре и свойствам продукции, маркировка.

Основными видами продукции ПДС являются: сталь электротехническая холоднокатаная изотропная тонколистовая; прокат тонколистовой холоднокатаный из малоуглеродистой качественной стали для холодной штамповки; прокат тонколистовой из углеродистой стали качественной и обыкновенного качества общего назначения; прокат тонколистовой оцинкованной; лента холоднокатаная из низкоуглеродистой стали. Производственная программа представлена в таблице 2.

Таблица 2 - Производственная программа непрерывного стана 1400

Наименование продукцииВыпуск, тыс.тДоля в общем объёме, %Расходный коэффициентПотребность заготовки, тыс. тЭлектротехническая холоднокатаная изотропная тонколистовая сталь (ЭХИТС) 1-ой группы легирования8959,21,098090,098ЭХИТС 2-ой группы легирования179,61,0980197,2ЭХИТС 3-ой группы легирования29,51,098032,391ЭХИТС 4-ой группы легирования51,51,098056,547Холоднокатаная низкоуглеродистая сталь в рулонах8614,61,094794,144Холоднокатаная сталь SFX, XC в рулонах132,21,094214,225

Выбор расчетных профилей и марок сталей

В соответствии с производственной программой выбираем холоднокатаную низкоуглеродистую сталь 08пс и принимаем следующие расчетные профили, которые представлены в таблице 3.

Таблица 3 - Расчетные профили для холоднокатаной низкоуглеродистой стали

№Расчетный профиль, ммПрофиль подката, ммСуммарная степень обжатия , %10,35×10502,0×108082,520,50×11502,3×118078,230,70×12502,5×128072

Технические требования к качеству готовой продукции

Холоднокатаная малоуглеродистая сталь должна соответствовать требованиям ГОСТ 9045-93, ГОСТ 19904-90.

Химический состав стали 08Ю и 08пс должен соответствовать требованиям, представленным в таблице 4.

Таблица 4 - Химический состав стали 08Ю и 08пс

Марка сталиМассовая доля элементов, %УглеродМарганецСераФосфорКремнийне более08Ю0,070,350,0250,020,0308пс0,090,450,030,0250,04

Согласно существующим нормам российских и зарубежных стандартов, к основным показателям, определяющим качество тонколистового проката, относятся отклонения по толщине и форме полосы. Дефектами формы прокатываемых полос являются: неплоскостность (коробоватость и волнистость), серповидность. Предельные отклонения по толщине стали должны соответствовать указанным в таблице 5.

холоднокатаный полоса сталь заготовка

Таблица 5 - Требования ГОСТ 19904-90 к отклонениям по толщине.

Толщина проката, ммПредельные отклонения по толщине при ширине прокатадо 1000 ммсв. 1000 мм до 1500 ммВысокая точностьПовышенная точностьНормальная точностьВысокая точностьПовышенная точностьНормальная точностьСв. 0,50 до 0,65±0,04±0,05±0,06±0,05±0,06±0,07Св. 0,65 до 0,90±0,04±0,06±0,08±0,05±0,06±0,08

Разнотощинность проката в одном поперечном сечении не должна превышать половину сумы предельных отклонений по толщине.

Предельные отклонения по ширине проката с необрезной кромкой должны быть не более +20 мм.

Серповидность проката не должна превышать 3 мм на длине 1 м. Телескопичность рулонного проката не должна превышать 60 мм. Механические свойства стали должны соответствовать нормам, указанным в таблице 6.

Состояние поверхности должно удовлетворять следующим требованиям: для глянцевой поверхности шероховатость Ra составляет не более 0,6 мкм, для матовой и шероховатой поверхности Ra не более 1,6 мкм. На лицевой стороне проката не допускаются дефекты, кроме отдельных рисок и царапин длиной не более 20 мм. На обратной стороне проката не допускаются дефекты, глубина которых превышает 1/4 суммы предельных отклонений по толщине, а также пятна загрязнений, цвета побежалости и серые пятна. Для контроля поверхности, размеров, плоскостности, химического состава, механических свойств, проведения испытания на выдавливание и определение микроструктуры от каждой партии проката отбирают два листа или один рулон длиной от 400 мм до 600 мм. Механические свойства и требования по микроструктуре для заданной стали представлены в таблице 6.

Таблица 6 - Механические свойства и требования по микроструктуре малоуглеродистой стали 08Ю и 08пс по ГОСТ 9045-93

Способность к вытяжкеВременное сопротивление, МПаОтносительное удлинение , %Твердость НR15TНомер зерна ферритаСтруктурно свободный цементит, балл не болееВОСВ (весьма особо сложная)250-35038766, 72ВГ (весьма глубокая)250-3902678-3ОСВ (особо сложная)250-35034766, 7, 8, 92СВ (сложная)250-38032786, 7, 8, 92

При получении неудовлетворительных результатов испытаний хотя бы по одному показателю проводят дополнительную проверку.

Для определения глубины сферической лунки по Эриксену от контрольной карты отрезается образец длиной от 80 мм до 90 мм, шириной соответствующей ширине полосы. Для испытания на растяжение из контрольной карты вырезают шесть образцов поперек направления прокатки размерами (20±0,1) мм×(210±0,5) мм. Для испытания на шероховатость из контрольной карты вырезают один образец размером (50±2) мм×(50±2) мм. Для определения твердости металла из контрольной карты вырезают два образца размером (30,0±0,1) мм×(280,0±0,5) мм.

Рисунок 4 - Схема отбора проб на аттестационные испытания

2 Описание технологического процесса получения заданного вида продукции, краткая характеристика основного и вспомогательного оборудования

Подготовка исходного материала к производству

Назначение агрегата подготовки горячекатаных рулонов - обрезка переднего и заднего концов полосы, сварка полос встык, обрезка боковых кромок и укрупнение рулонов с помощью стыкосварочной машины. В цехе установлены два таких агрегата.

Металл, имеющий высокую температуру, должен быть охлажден до температуры не более 100 °С (для всех марок стали). При обработке передний конец рулона выравнивают роликоправильной машиной (РПМ) перед обрезкой, затем обрезают «язык» длиной до 2 м и сбрасывают в малую приемную кассету.

При наличии на кромке полосы дефектов, превышающих размер обрезаемой кромки, а также при наличии дефектов поверхности участок режут на лист и сбрасывают в основную кассету. Задний конец рулона выравнивают РПМ, «язык» заднего конца длиной до 2 м обрезают и сбрасывают в малую приемную кассету.

Укрупнение рулонов происходит с помощью стыкосварочной машины. Вид сварки - стыковая, плавящимся электродом с последующей зачисткой и отжигом сварного шва. Далее происходит подача полосы на моталку.

Скорость транспортировки полосы при подготовке полос холоднокатаной углеродистой стали - не более 300 м/мин.

После обработки на агрегате подготовки рулоны должны отвечать следующим требованиям.

Размеры рулонов:

внутренний диаметр (850+10) мм;

наружный диаметр не более 2300 мм;

масса рулонов - до 36 т.

Серповидность полос - не более 3 мм на 1 погонного метра (п.м.).

Отклонение от номинальной ширины полосы - не более 0,5%.

При обработке на агрегате не допускается образование на поверхности полосы царапин, надавов, выходящих за 1/2 допуска по толщине, а также появление заусенцев и сколов после обрезки горячекатаного подката. В случае появления заусенцев или других дефектов кромки производится настройка или перевалка агрегата подготовки горячекатаных рулонов, а рулон отставляется на повторную подрезку. Допускается повторная обработка рулона согласно техническому заданию или для удаления дефекта, обнаруженного на металле.

После обработки рулона на агрегате, оператор поста управления (ПУ) осматривает рулон и производит его маркировку в соответствии с данными системы слежения за металлом (ССМ). Рулон после обработки не должен иметь заворотов, рванин, плен и других дефектов поверхности, влияющих на дальнейшую обработку. Дефекты, которые невозможно вырезать на агрегате должны быть отмечены в паспорте плавки.

Травление горячекатаного подката

Очистка поверхности горячекатаных полос от окалины осуществляется на НТА посредством обработки дробью с последующим травлением (окунанием) в растворе соляной кислоты, и обрезкой и промасливанием полос.

Упрощенная схема непрерывного агрегата травления представлена на рисунке 5.

Агрегат имеет 5 плоских ванн травления и 4 секции промывки полосы. Объем кислотного раствора, одновременно содержащегося в агрегате - 125 м.

При дробеструйной обработке применяется дробь стальная, литая, круглая, диаметром 0,6 мм.

Рисунок 5 - Упрощенная схема НТА ОАО «НЛМК»

Разматыватель; 2, 7, 8 - тянущие ролики; 3 - правильная машина; 4 стыкосварочная машина; 5 - натяжная станция; 6 -6 входной петлевой накопитель; 8 - устройство правки растяжением; 9, 15, 17, 22 - натяжные ролики; 11 - травильная ванна; 12 - промывная ванна; 13 - сушилка; 14 - управляющий ролик; 16 - выходной накопитель; 18 - боковой штамп; 19 - дисковые ножницы; 20 - промасливающая машина; 21 - гильотинные ножницы; 23 - моталка.

Время травления - до 4 мин.

Раствор соляной кислоты в кислотные ванны подается насосами из складских резервуаров. Регенерированная кислота с блока химических установок (БХУ) подается в 5 кислотную секцию, которая перетоком поступает в предыдущие кислотные секции. Отработанный травильный раствор откачивается из 1 секции на БХУ.

Процесс травления холоднокатаной малоуглеродистой стали осуществляется в растворе соляной кислоты по режиму, представленному в таблице 7. После травления осуществляется промывка полосы от остатков травильного раствора в 4-х секционной промывочной ванне. Тип промывки - каскадный, струйный. В качестве промывной воды используется обессоленная вода, получаемая в установке обессоливания методом обратного осмоса. При отсутствии обессоленной воды для промывки полосы используется химически очищенная вода и конденсат. Подача промывной воды в 4 секцию ванны промывки осуществляется из отдельного бака при помощи циркуляционного насоса. Промывка металла производится путем распыления на полосу промывной воды через систему коллекторов. В 3секции ванны промывка четырьмя капроновыми щетками и отжимается гуммированными роликами.

Таблица 7 - Базовый режим обработки холоднокатаной низкоуглеродистой стали на НТА

ПараметрыНоминальное значение параметраПределы применения параметраСкорость полосы в линии травления, м/мин120±30Температура травильных растворов в ваннах травления, °С75±15Массовая концентрация общей соляной кислоты в 5-ой по ходу полосы ванне травления, г/дм³190±20Массовая концентрация общего железа 5-ой по ходу полосы ванне травления, г/дм³20±10Массовая концентрация общего железа 1-ой по ходу полосы ванне травления, г/дм³90Не болееМассовая концентрация общей соляной кислоты в 1-ой по ходу полосы ванне травления, г/дм³190±20

В первой по ходу полосы секции ванны промывки:

массовая концентрация соляной кислоты, г/дм³ - не более 5;

массовая концентрация общего железа, г/дм³ - не более 2.

В четвертой секции ванна промывки:

массовая концентрация соляной кислоты, мг/дм³ - не более 20;

температура промывной воды. °С - не менее 70.

При остановках агрегата полоса не должна находиться в травильном растворе более 10 мин.

Очистка травильных ванн и трубопроводов осуществляется периодически путем нейтрализации солянокислых остатков раствором гидроксида натрия (NaOH).

Рулоны после обработки в агрегате травления должны отвечать следующим требованиям.

Для двух соседних витков выступ не должен превышать 5 мм (за исключением 2-3 внутренних и одного наружного витка). На телескопическом рулоне выступы из средней или внутренней части рулона не должны превышать 10 мм.

При необходимости дефектные участки вырезаются, или производится повторная обработка рулона согласно технологическому заданию для удаления дефекта, обнаруженного на металле.

Удаление влаги с поверхности полосы производится в сушильной установке путем подачи на полосу горячего воздуха. Наличие влажных участков на высушенной полосе не допускается. Поверхность травленой полосы должна быть матовой, без следов перетрава и недотрава.

Поверхностная плотность хлорид - иона на поверхности полосы - не более 10 мг/м² при промывке обессоленной водой и не более 20 мг/м² при промывке химочищенной водой.

После обработки рулона на агрегате оператор ПУ осматривает рулон и производит его маркировку в соответствии с исходной маркировкой. Все обнаруженные дефекты должны быть отмечены в паспорте плавки.

Холодная прокатка

Холодная прокатка производится на четырех клетевом стане 1400 на конечную толщину.

Основные характеристики стана:

размеры подката, мм: толщина - 1,6 - 3,5; ширина - 750 - 1250;

конечная толщина, мм: 0,35 - 1,00;

длина бочек рабочих и опорных валков, мм: 1400;

диаметр рабочих валков, мм; 440 - 400;

диаметр опорных валков, мм: 1400 - 1300;

чистота обработки поверхности валков: 8-9 класс;

максимальное усилие прокатки, МН: 25,6;

мощность двигателей: главных приводов (номинальная) по 2х2540 кВт; на разматывателе - 2х360 кВт; на моталке - 2540 кВт;

натяжение, кН: при разматывании - 9,1 -91; при намотке - 9,0 - 90. Система охлаждении валков и полосы двухвариантная рециркуляционная;

охлаждение водой на всех клетях с подачей на полосу технологической смазки:

в качестве смазочно - охлаждающей жидкости (СОЖ) используется

5 % водная эмульсия «Quaker 402DPD». Максимальный расход охлаждающей жидкости на входных и выходных коллекторах - 6000 л/мин.

Подача СОЖ производится на рабочие валки клетей №№ 1 - 3 со стороны входа и выхода, в клети № 4 - только со стороны входа.

Нижние валки оснащены стационарными коллекторами, верхние - подвижными.

На верхние опорные валки клетей №№ 1 - 3 СОЖ подается со стороны входа и выхода, на нижние опорные валки одним коллектором со стороны выхода. Опорные валки клети № 4 охлаждаются только со стороны входа.

Предусмотрена возможность зонной подачи СОЖ (в клетях 1, 2 и 4 три зоны, 3 - пять зон). При этом все коллектора клетей №№ 1 - 3 пятизонные (средняя зонa включает 12 форсунок, остальные зоны - по шесть форсунок). В клетях 1 - 3 регулирование подачи эмульсии но зонам производится одновременно на рабочих и опорных валках (раздельно со стороны входа и выхода), а в клети № 4 - отдельно рабочих и опорных валков. Расстояние между осями крайних форсунок во всех коллекторах составляет 1260 мм. Схема расположения оборудования представлена на рисунке 6.

Рисунок 6 - Схема расположения оборудования стана 1400

Приемный конвейер; 2. Падающая балка; 3.Загрузочная тележка; 4. Разматыватель; 5. Станция подготовки; 6. Гильотинные ножницы; 7. Рабочие клети; 8. Редукторы главных приводов; 9. Двигатели главных приводов; 10. Передвижные тележки; 11. Моталка; 12. Приемный стол; 13. Отводящий рольганг

Краткая характеристика оборудования стана 1400 представлено в таблице 8.

Таблица 8 - Краткая характеристика оборудования стана 1400

Позиция на схемеНаименование оборудованияТехническая характеристика и назначение оборудование1Приемный конвейер с центрирующим устройствомНазначение: для приема и транспортировки рулонов к падающей балке. Тип с подвижной балкой, управляется гидравлически; Емкость составляет 6 рулонов; Масса составляет 34,7 тонн; Скорость подъема составляет 18 мм/с; Ход составляет 250 мм; Скорость перемещения составляет 100 мм/с2Падающая балкаНазначение: для транспортировки рулона с подъемника и установки его на загрузочную тележку. Тип горизонтальный, V - образная, стальная сварная конструкция; Емкость составляет 1 рулон; Масса - 35,2 тонны; Длина балки составляет 1 метр; ход - 3 метра; Скорость передвижения - 200 мм/с.3Загрузочная тележкаНазначение: для поднятия рулона после центровки и передачи к подготовительной станции и к разматывателю. Тип - гидравлический; Емкость составляет 1 рулон; Масса - 44,3 тонны; Густая смазка поверхностей скольжения от центральной системы; жидкая с разбрызгиванием смазка редуктора-Измеритель ширины и диаметр рулонаВ его состав входят фотоэлементы и механические щупы, которые смонтированы на кронштейнах стальной сварной конструкции. Масса измерителя составляет 2 тонны.4РазматывательНазначение: для разматывания рулона с необходимой скоростью и натяжением. Тип - плавающий с двумя изменяемыми по диаметру барабанами; Максимальная скорость составляет 390 м/мин; Максимальное натяжение при разматывании - 91 МПа;9ДвигательТип: двигатель постоянного тока CZ172.5-49-10 Мощность: 2×2540 кВт Частота вращения вала двигателя: n-0-200-400 об/мин.-Моторная муфтаТип: зубчатая Максимальный передаваемый крутящий момент: 0,094 МНм7Нажимное устройствоНазначение: обеспечивающее перемещение валков параллельно собственным осям в вертикальной плоскости. Тип - гидравлической нажимное устройство.7Устройство осевой регулировкиДопустимое осевое перемещений верхнего валка: 2,5 мм Тип: рычажное7Уравновешивающее устройствоТип: пружинное-Узел станинНазначение: для расположения всех механизмов, узлов, элементов рабочей клети и окончательного восприятия усилия прокатки. Станина открытого типа. Конструкция узла станин: цельнолитая Материал: Высокопрочный чугун ВЧ 45-57Рабочие валкиНазначение: взаимодействую с металлом, непосредственно осуществляют пластическую деформацию. Максимальный диаметр рабочих валков составляет 440 мм; Минимальный диаметр- 400 мм; Длина бочки валков 1400 мм; Масса составляет 2750 кг. Материал валка 9Х2МФ7Опорные валкиНазначение: главным образом, обеспечивают минимальный прогиб рабочих валков. Максимальный диаметр опорных валков составляет 1400 мм; Минимальный диаметр- 1300 мм; Длина бочки валков 1400 мм; Длина шейки составляет 950 мм; Масса составляет 25 тонн. Максимальное усилие составляет 2600 кН; Материал валка 90ХФ.7ПодшипникиРабочие валки: конические роликовые подшипники качения. Для восприятия большой осевой нагрузки. Опорные валки: подшипники жидкостного трения. Для восприятия радиальной нагрузки.7ПодушкиМатериал: сталь 40-Направляющие столыНазначение: для направления полосы между клетями и на выходе из четвертой клети.-ТолщиномерыНазначение: для измерения и контроля толщины полосы. Толщиномеры изотропного типа; Класс точности - 111МоталкаНазначение: для сматывания полосы в рулон. Тип - с консольный барабаном; Максимальная масса рулона составляет 30 тонн; Максимальная скорость намотки - 15 м/с; Максимальный наружный диаметр рулона - 2300 мм; Максимальное натяжение - 91 кН; Номинальный диаметр 600 мм; Диаметр в сжатом состоянии 565 мм; Диаметр в разжатом состоянии 600 мм; Длина бочки барабана составляет 1400 мм; Масса барабана составляет 29,5 тонн.-Сталкиватель рулоновТип сталкивателя гидравлический. Густая смазка, которая осуществляется от центральной системы. Масса сталкивателя составляет 2,2 тонн.-Прижимной ролик моталкиДиаметр ролика составляет 200 мм. Диаметр бочки ролика составляет 600 мм; Масса ролика 7,8 тонн.10Тележка для снятия рулоновНазначение: предназначается для транспортировки рулонов от моталки Тип тележки - гидравлическая с V - образным седлом и прижимным роликом.

Также производится инспекция и чистка форсунок подачи смазочно-охлаждающих жидкостей во всех клетях стана. Подача смазочно-охлаждающей жидкости осуществляется одновременно с началом прокатки и прекращается с сё окончанием. Эксплуатация технологических смазочных средств осуществляется по технологической инструкции. При смотке полосы остатки эмульсии не должны попадать в рулон. Загрязненность поверхности полос после холодной прокатки с применением эмульсии не должна превышать 1 г/м² на обе стороны полосы.

Предлагается, для устранения неплоскостности холодная прокатка будет производиться с включением системы контроля плоскостности полос, в которую входит стрессометрический ролик, измеряющий распределение удельных натяжений по ширине полосы и систему селективного охлаждения рабочих валков с целью устранения асимметричных погрешностей плоскостности, которые невозможно устранить исполнительными элементами плоскостности, как, например противоизгибом.

Процесс холодной прокатки холоднокатаной малоуглеродистой стали осуществляется в соответствии с базовыми режимами, представленными в таблице 9. После прокатки полоса должна соответствовать следующим требованиям: длина утолщенных концов - не более 30 м; поперечная разнотолщинность полос - не более 1/2 суммы предельных отклонений по толщине; серповидность полос - не более 3 мм на один метр длины; не плоскостность холоднокатаных полос не должна превышать 6 мм при шаге не менее 600 мм.

Таблица 9 - Базовые программы прокатки холоднокатаной низкоуглеродистой стали 08Ю и 08пс на 4-клетевом стане 1400

Марка сталиНомер клетиНатяжение полосы, МПаТолщина полосы, ммОтносительное обжатие, %Суммарное обжатие, %Скорость прокатки, м/сКоэффициент трения08ЮДо802,311411,535353,30,08321720,9537595,30,07831250,6532727,70,0754850,52378100,07408псДо802,511711,6335354,30,07322221,1430556,160,06831790,87236580,0664850,72072100,064

Также на поверхности полосы не допускаются пятна загрязнений, поджоги, царапины и отпечатки от валков, выходящие за 1/2 допуска по толщине. Выступание отдельных витков в рулоне должно быть не более 5 мм, кроме внутреннего и наружного витков. Прокатанный рулон обвязывается, маркируется и передаётся на агрегат подготовки холоднокатаных рулонов.

Агрегат подготовки холоднокатаных рулонов

Каждый из двух агрегатов подготовки холоднокатаных рулонов предназначен для обрезки кромок, вырезки дефектных участков, обрезки концов и стыковой сварки отдельных рулонов.

Основные характеристики агрегата:

натяжение, кН: 6,2 - 18,8.

Рулон, прошедший обработку па агрегате подготовки, должен удовлетворять следующим требованиям.

Передний и задний концы полосы обрезают до толщины:

не более 0,8 мм для толщины 0,48 мм;

не более 0,5 мм для толщины 0.34 мм.

Утолщенные и дефектные участки вырезают, и полосу сваривают встык.

На переднем и заднем утолщенных концах до 10 м допускаются пятна поджогов.

Выступание витков из рулона не более 5 мм.

При обработке на агрегате не допускается образование царапин, надавов, выходящих за 1/2 допуска по толщине.

Рулон может состоять из полос, сваренных встык. При укрупнении рулонов место шва должно быть отмечено металлическими закладками или краской на торце рулонов.

На всей длине сварного шва не допускаются прожоги и непроваренные места.

Подготовленный рулон обвязывается и маркируется. При маркировке укрупненного рулона указываются номера полос в порядке их смотки в рулон.

Обработка холоднокатаных полос на АНО

Обезуглероживание (снижение содержания углерода в стали) в процессе обработки в линии АНО способствует улучшению электротехнических свойств стали, а также применяется для того, чтобы в процессе эксплуатации у потребителей не происходило старения (изменения свойств с течением времени) из-за выделения карбидов (соединений углерода с железом). Обезуглероживающий отжиг осуществляется в атмосфере увлажненного защитного (азотно-водородного) газа, исключающего окисление поверхности. Кроме окисления углерода влага (Н20) газовой среды в печи окисляет железо и легирующие элементы (Si, Al и др.). в результате чего формируется приповерхностная зона окисления. Помимо обезуглероживания в линии АНО осуществляется рекристаллизационный отжиг, проводимый с целью снятия наклепа (упрочнения) после холодной прокатки и формирования оптимальной структуры металла. Агрегат непрерывного отжига представлен на рисунке 7.

Рисунок 7 - Принципиальная технологическая схема АНО

НУ - Натяжное устройство; ЦР - Центрирующий ролик; КН - Камеры нагрева; КВ - Камеры выдержки; КРО - Камеры регулируемого охлаждения; КСО - Камеры струйного охлаждения; ВХ - Воздушный холодильник.

Очистка полосы от технологических смазок в линии агрегата производится в следующей последовательности:

обезжиривание полосы;

промывка полосы в щёточно-моечной машине (ЩММ);

окончательная промывка полосы в промывочной ванне;

сушка полосы горячим воздухом.

На АНО-5 может производиться дополнительное обезжиривание полосы с использованием установки ультразвуковой очистки полосы.

На АНО-7 может производиться дополнительная очистка моющего раствора с использованием установки «ВИТА-МР-15» и очистка промывной воды с использованием установки «ВИТА-С-8».

Для обезжиривания полосы используется моющий раствор на основе средства моющего технического «Фоскон-203».

Массовая концентрация общей щелочи (по NaOH общ.) в рабочем обезжиривающем растворе должна быть 8,0-15.0 г/дм³.

Температура обезжиривающих растворов не должна быть менее 80°С.

Замену обезжиривающих растворов производят при массовой концентрации механических примесей в растворах более 1,0 г/дм³.

Промывка полосы в ЩММ осуществляется с помощью капроновых щеток. Количество щеток не менее четырех. Температура промывной воды должна быть не менее 70 °С.

Окончательная промывка осуществляется в промывочной ванне путём подачи на полосу сверху и снизу химочищенной воды.

После сушки на поверхности полосы не должно быть мокрых пятен.

Загрязненность полосы после очистки должна быть не более 0,1 г/м² на обе стороны полосы.

Термообработка холоднокатаной малоуглеродистой стали проводится по базовым режимам, представленным в таблице 10.

Таблица 10 - Базовые температурные режимы обработки на АНО

ПараметрЗначение параметраТемпература в зоне № 1, °С820Температура в зоне № 2, °С820Температура в зоне № 3, °С820Температура в зоне № 4, °С820Температура в зоне № 5, °С790Температура в зоне № 6, °С770Температура в зоне № 7, °С770Температура в зоне № 8, °С770Температура в зоне № 9, °С200Температура в зоне № 10, °С350Температура в зоне № 11, °С400Температура в зоне № 12, °С450Температура в зоне № 13, °С400Температура в зоне № 14, °С350Температура в зоне № 15, °С300Температура в зоне № 16, °С270Температура в зоне № 17, °С250Температура в зоне № 18, °С220Температура в зоне № 19, °С200

В камере регулируемого охлаждения полоса охлаждается в атмосфере азотного газа при температуре зон не более 750 °С. Массовая доля углерода в стали после отжига не более 0,005 %. Скорость движения ленты в агрегате непрерывного отжига выбирается в зависимости от содержания углерода в стали и толщины полосы. Для толщины 0,5 мм она составляет (30 ± 3) м/мин. Время выдержки составляет 2,2 мин.

Нагрев полосы электрический, который осуществляется с помощью расположенных на поде и своде печи нагревательных элементов. Входной шлюз отделяет печную атмосферу от атмосферы цеха.

Зависимость температуры отжига от времени представлена на рисунке 8. Печь для отжига имеет две камеры нагрева, две камеры выдержки, камеру регулируемого охлаждения, камеру струйного охлаждения и воздушный холодильник. Первая камера нагрева разделена на 4 зоны регулирования (длина камеры 32,85 м).

Агрегат непрерывного отжига представлен на рисунке 7.

Полоса нагревается до требуемой температуры, в зависимости от режима термообработки. Первая камера выдержки разделена на 9 ЗОН регулирования (длина камеры 160,0 м).

Вторая камера нагрева - одна зона регулирования (длина камеры 10,8 м). Между первой камерой выдержки и второй камерой нагрева имеется разделительный тамбур длиной 1,8 м. Вторая камера выдержки разделена на 3 зоны регулирования (длина камеры 25,2 м). В камерах выдержки полоса выдерживается при определенной температуре. Между камерой выдержки и камерами охлаждения имеется разделительный тамбур длиной 1,8 м, который служит предотвращения перетока атмосферы между камерами, сокращения потерь атмосферы контролируемого состава в местах входа и выхода полосы. Камера регулируемого охлаждения имеет длину 13,7 м. Охлаждение осуществляется косвенным методом с помощью труб воздушного охлаждения. Камера струйного охлаждения обеспечивает охлаждение за счет подачи азота вентиляторами (длина камеры 13,3 м).

Азото- водородный газ, подаваемый в первые камеры нагрева и выдержки, может увлажняться в пяти увлажнителях.

Секция нагрева служит для нагрева полосы до требуемой температуры (допустимая рабочая температура в секции 950 °С), В качестве топлива используется природный газ, который сжигается в радиантных трубах (в секции расположено 217 радиантных труб с горелками).

Секция выдержки необходима для выдерживания полосы при определённой температуре в течение установленною времени. Температура в секции создастся электронагревателями.

Секция газового охлаждения служит для охлаждения полосы до температуры 500 °С - 600 °С с помощью защитного азотного газа, циркулирующего через холодильники. Секция оборудована электронагревателями.

Секция ускоренного охлаждения служит для охлаждения полосы водой от

°С - 600 °С до 40 °С. Удаление с поверхности полосы окисной пленки производится в ванне травления с помощью соляной кислоты. Далее полоса проходит ванну холодной промывки водой через струйные сопла, соединенные в коллекторы, ванну нейтрализации поверхности полосы раствором метасиликата натрия щеточно-моечную машину, ванну горячей промывку и сушилку.

Секция быстрого охлаждения полосы защитным азотно-водородным газом, циркулирующим через 10 холодильников. Допустимая рабочая температура 300 °С. Полоса в секции охлаждается до температуры ниже 100 °С.

Секция воздушного охлаждения полосы до 20°С с помощью воздуха, забираемого вентиляторами из окружающего пространства.

Все печные секции соединены между собой переходными тамбурами, оснащённые компенсаторами теплового расширения и необходимой тепловой изоляцией.

Дрессировка

Дрессировка (холодная прокатка с малым обжатием) отожжённой полосы осуществляется для получения требуемого стандартами уровня механических свойств. Проектная годовая производительность дрессировочной клети «1400» -75100 т.

Дрессировка осуществляется в один или два прохода с суммарным обжатием до 3,2 % на одноклетьевом стане холодной прокатки 1400.

Подачу рулонов на дрессировку осуществляют в порядке их обработки на АНО, начиная с первой партии плавки. Поверхность полосы должна быть чистой, без рисок, царапин, цветов побежалости, пятен загрязнений, наколов, отпечатков, порезов. Для стали 08Ю и 08пс дрессировка проводится со степенью деформации 0.8 - 12% в один проход.

Выступание отдельных витков дрессированных рулонов не должно превышать 5 мм, телескопичность рулонов не более 20 мм. После дрессировки верхний виток рулона закрепляется, рулон маркируется и передается на склад.

Транспортный шов с АНО перед дрессировкой вырубается. Дрессировка может осуществляться как на гладких, так и на насеченных рабочих валках в зависимости от требований заказа к шероховатости готовой полосы.

После дрессировки может осуществляться выпрямляющий отжиг на АНО для устранения рулонной кривизны.

В соответствии с требованиями заказа возможна отгрузка проката в горячекатаном (после обрезки утолщённых концов и подрезки кромки) или холоднокатаном состоянии (после обрезки концов).

После получения результатов аттестационных испытаний магнитных и механических свойств производится задача товарных рулонов на агрегаты продольной резки. На агрегатах продольной резки осуществляется обрезка утолщённых концов до номинальной толщины, подрезка кромки, роспуск рулонов на ленты или деление на рулоны меньшего веса в соответствии с требованиями заказа и упаковка.

Упаковка порезанного металла осуществляется по различным схемам в соответствии с требованиями заказа.

Отгрузка готовой стали осуществляется автомобильным или железнодорожным транспортом.

Контроль геометрических параметров подката осуществляется в прокатном отделении работниками УТК.

Отбор проб для контроля геометрических параметров холоднокатаного подката и массовой доли углерода осуществляется на агрегатах подготовки холоднокатаных рулонов.

Размер проб: длина 1500 - 2000 мм.

Определение массовой доли углерода в стали осуществляется на образцах проката (две полоски шириной от 30 мм до 35 мм, вырезанных по всей ширине полосы) в лаборатории УТК.

Отбор проб производится от начала или конца каждого холоднокатаного рулона обрабатываемой плавки после подготовки.

Для определения загрязнённости полосы технологический персонал отбирает четыре пробы металла размером (100 ± 2) мм × (100 ± 2) мм и доставляет в лабораторию УТК.

Для контроля массовой доли углерода в стали после отжига производится отбор проб от начала или конца контрольного рулона обрабатываемой плавки после агрегата термообработки.

Размер пробы: длина от 300 мм до 500 мм.

Из проб персоналом цеха вырезаются полоски шириной от 30 мм до 35мм поперёк направления прокатки.

Определение массовой доли углерода в образцах стали производится в лаборатории УТК.

Для определения загрязнённости полосы после обезжиривания перед термообработкой отбираютсячетыре пробы металла размером (100 ± 2) мм × (100 ± 2) мм.

Аттестационные испытания проводятся в лаборатории УТК.

Доставка проб от агрегатов к местам разделки и в лабораторию осуществляют в условиях, исключающие механические повреждения образцов.

4. Расчет технологического процесса

1 Расчет деформационного режима

Для выбора распределения обжатий в курсовом проекте используется следующая стратегия: загрузка клетей производится так, чтобы обжатия последовательно уменьшались от первой клети к последней вследствие упрочнения металла. Основной целью данной стратегий является обеспечение одинаковых профилировок валков с целью более равномерного износа валков и одинаковых условий предъявляемым к обработке рабочих валков в вальцешлифовальных машинах (ВШМ).

При выборе деформационного режима ориентируемся на опыт работы стана 1400 ОАО «НЛМК» и принимаем для стали 08пс толщину подката равной 2,5 мм для проката 0,7 мм.

Ширина исходной заготовки с учетом обрезных кромок, которые составляют по 20 мм с каждой стороны составит:

где - конечная ширина, мм.

Обжатие в первой клети составляет 30 - 40% для уменьшения исходной разнотолщинноcти подката и уверенного захвата; обжатие в последнем проходе понижаем для обеспечения высокой плоскостности, снижения усилия прокатки из-за упрочнения стали и предотвращения сваривания валков с металлом валков вследствие выдавливания смазки, в пределах 15-25%.

Основным фактором, ограничивающим обжатие в первом проходе непрерывного стана холодной прокатки стали, является угол захвата. При холодной прокатке угол захвата рекомендуется принимать не более 3 - 6.

Расчет тангенса угла захвата является классической задачей

Коэффициент трения, находит по формуле :

где = 1,2 - для эмульсии;

Скорость прокатки, м/с;

Кинематическая вязкость смазки при 50°С, (м²/с10);

Высота неровностей на поверхности валка, мкм.

Для того, чтобы условие захвата в первой клети выполнялось необходимо:

Условие захвата для первой клети выполняется.

Таблица 11 - Распределение обжатий по клетям стали 08пс на непрерывном стане 1400*

ПараметрыНомер клети1234, мм2,51,631,140,87, мм1,631,140,870,7∆, мм0,870,490,270,17, %35302320, %35556572*Примечание: Прокатка ведется с исходной толщины 2,5 мм до конечной толщины 0,7 мм и ширины 1000 мм

В последующих после первой клети обжатия распределены таким образом, чтобы обеспечить постоянство усилия прокатки во всех проходах.

4.2 Расчет скоростного режима

В последнем межклетьевом промежутке задается минимальным натяжением, так как полоса на данной стадии прокатки является тонкой, металл упрочнен и охрупчен, тем самым увеличивается возможность обрыва полосы.

Натяжение, рассчитываем по следующей формуле:

где - предел текучести в данной клети, МН/м².

В данной методике расчета допускаем постоянство предела текучести металла в очаге деформации, равного полусумме предела текучести до и после прокатки.

Предел текучести определяем по формуле для низкоуглеродистых сталей

где - исходный предел текучести, МПа;

a и b - это эмпирические константы, показывающие интенсивность наклепа и зависящие от химического состава стали.

Для стали 08пс принимаем исходный предел текучести = 190 МПа; a = 33,4; b = 0,6.

Таки образом, предел текучести по формуле (5) составит:

В клети №1

В клети №2

В клети №3

В клети №4

Определяем натяжение по формуле (4):

Максимальное натяжение при разматывании составляет 90 МПа.

Зададимся величиной натяжения при разматывании:

В клети №1

В клети №2

В клети №3

Максимальное натяжение при намотке составляет 92 МПа. Зададимся величиной натяжения при намотке:

Расчет скоростного режима ведем на основе закона постоянства секундных объемов:

где - толщина полосы на выходе из i-ой клети, мм;

Скорость прокатки в i-ой клети, м/с.

Скорость прокатки в 4 клети составляет: = 10 м/с. Тогда скорость по формуле (6):

В клети №3 составляет:

В клети №2 составляет:

В клети №1 составляет:

4,3 м/с.

4.3 Расчет энергосиловых параметров

Расчет энергосиловых параметров прокатки расчетных профилей проведен с помощью ЭВМ (MS Excel). Далее приведен расчет для первого прохода при прокатке автолистовой стали 08пс на толщину 0,7 мм с исходной толщины 2,5 мм.

Расчет усилия прокатки базируется на методике А.И. Целикова, которая учитывает наклеп металла при холодной прокатке и натяжение полосы в межклетьевых промежутках. При этой методике приняты следующие допущения: отсутствие уширения полосы при прокатке; замена дуги контакта хордой.

Для расчета среднего контактного давления используем метод А.И. Целикова .

Определим усилие прокатки:

где - давление на валки, МПа;

Длина дуги контакта, с учетом упругого сплющивания, мм;

b - ширина проката, мм.

где - толщины полосы в нейтральном сечении;

Конечная толщина полосы, мм;

∆h - обжатие за проход, мм;

Средний предел текучести прокатываемого металла, МПа, который рассчитывается по формуле:

Определяем отношение толщины полосы в нейтральном сечении к конечной толщине:

где h0 - начальная толщина полосы, мм;

δ - показатель деформации, рассчитываемый по формуле:

где ƒy - коэффициент трения;

Длина очага без учета сплющивания валков, которая определяется:

где R - радиус рабочих валков, мм.

По формуле (11) определим показатель деформации δ:

Определим по формуле (10) отношение высоты металла в нейтральном сечении к конечной толщине:

Определим среднее давление без учета натяжения по формуле (8):

Среднее давление с учетом натяжения полосы определяется по формуле:

где - натяжение полосы до и после прокатки, МПа.

Длину дуги контакта с учетом упругого сплющивания валков мм, определяют по формуле:

где - приращение длины дуги контакта за счет упругого сплющивания валков, которое определяется по формуле:

где c = 1,375,

m = 1,12/МПа

Находим усилие по формуле (7):

Р = 330·1020·15,07=5,17 МН.

4 Расчет мощности электродвигателя

Момент на валу двигателя кН·м, необходимый для привода валков прокатного стана, слагается из четырех величин:

где - момент прокатки, кН·м, то есть тот момент, который требуется для преодоления сопротивления деформации прокатываемого металла и возникающих при этом сил трения по поверхности валков;

Момент добавочных сил трения, приведенных к валу двигателя, возникающих при проходе прокатываемого металла между валками, в подшипниках валков, в передаточном механизме и других частях стана, но без учета момента, требующегося на вращение стана при его холостом ходе;

Момент холостого хода, то есть момент, требующийся для привода стана в момент холостого хода.

Определим момент прокатки, использую формулу:

где ψ - коэффициент плеча момента.

Коэффициент плеча момента определяем по формуле М.М. Сафьяна и В.И. Мелешко

; Mпр = 47,82 кН·м.

Момент сил трения в подшипниках опорных валков, приведенный в вабочим валкам, составляет:

где f n - коэффициент трения в подшипниках валков. Для подшимников жидкостного трения f n = 0,003;

don - диаметр шейки опорных валков с учетом втулки-насадки, мм;

Dp - диаметр рабочих валков, м;

Don - диаметр опорных валков, м.

Находим момент добавочных сил трения в передаточных механизмах главной линии:

где - момент прокатки, кН·м.

Определяем статический момент:

где i - передаточное число, которое принимаем 1,737.

Находим момент холостого хода:

где - номинальный момент двигателя, кН·м.

Момент на валу двигателя будет равен:

Находим угловую скорость на валах двигателей:

где - окружная скорость вращения валков, м/с.

где V1 - рабочая скорость, м/с;

S - опережение определяется по формуле;

По формуле (23) рассчитаем угловую скорость вращения валков:

Мощность кВт, вычисляют по формуле:

Аналогичный расчет был произведен для остальных клетей. Полученные результаты представлены в таблице 12.

Таблица 12 - Результаты расчета энергосиловых параметров стали 08пс на непрерывном четырехклетевом стане 1400*

Марка сталиНомер клетиε, %qн, МПаqк, МПаσп,МПаσp, МПаƒустlД, ммlc, ммpcр,МПаР, МНМпр,кНмNдв, кВт08пс135801711904710,07313,8153305,1747,88942301712224715560,06810,312,35296,7647,612963232221795565940,0667,69,96096,2835,51396420179855946270,0646,29,147386,9234,81746*Примечание: Прокатки ведётся для стали 08пс с исходной толщиной 2,5 мм до конечной толщины 0,7 мм и ширины 1000 мм.

5. Анализ технологического режима

Распределение обжатий по клетям стана 1400 представлено на рисунке 8.

Значения усилий и мощности прокатки представлены на рисунке 9 и 10 соответственно.

Рисунок 9 - Усилие прокатки

Рисунок 10 - Мощность прокатки

Список использованных источников

1.А.И. Целиков, Г.С. Никитин, С.Е. Рокотян. Теория продольной прокатки. М.: Металлургия, 1980. -124с.

2.Полухин П.И., Хензель А., Полухин В.П. Технология процессов обработки металлов давлением. - М.: Металлургия, 1988. -407 с

3.Целиков А.И. Теория расчета усилий в прокатных станах. - М.: Металлургия, 1962. - 222 с

4.Коновалов Ю.В., Остапченко А.Л., Пономарев В. И. Расчет параметров листовой прокатки. Справочник. М.: Металлургия, 1986,. -430 с

В составе прокатного отделения ПДС имеется:

Четырехклетевой стан 1400 холодной прокатки.

Назначение: непрерывная холодная прокатка полосы на заданную толщину.

Максимальная скорость прокатки 810 м/мин, заправочная скорость от 30 до 60 м/мин. Минимальная толщина прокатанной полосы 0,35мм.

Размеры валков:

Диаметр рабочих 440/400 мм;

Диаметр опорных 1400/1300 мм.

Чистота обработки поверхности валков - 8 ÷ 9 класс.

Максимальное давление металла на валки 26 МН.

Мощность электродвигателей на разматывателе: 2×360 кВт.

Мощность двигателей главных приводов для клетей № 1÷ 4 - 2×2540 кВт.

Мощность двигателей на моталке - 2540 кВт.

Холодная прокатка полос производится в четырех четырехвалковых клетях с приводом рабочих валков через сдвоенные редукторы и зубчатые шпиндели. Схема расположения оборудования 4-х клетевого стана 1400 показана на рисунке 2.

Максимальным крутящим моментом на выходном валу редуктора:

Для клетей № 1, 2 – 265 кН·м;

Для клети № 3 – 196 кН·м;

Для клети № 4 – 160 кН·м;

Передаточные отношения клетей:

Для клетей № 1, 2 – 1,737;

Для клети № 3 – 1,289;

Для клети № 4 – 1,0.

В качестве смазочно-охлаждающей жидкости в клетях № 1÷4 подаётся 3÷5% водная метастабильная эмульсия.

Максимальный расход охлаждающей жидкости на входных и выходных коллекторах 600 л/мин. Система охлаждения валков предусматривает раздельную подачу технологической смазки на клети № 1,2 и 3,4 раздельной концентрации или одной концентрации на все клети.

Подача СОЖ на рабочие валки клети № 4 дифференцирована. Система подает смазочно-охлаждающую жидкость отдельно на двадцать равных участков по длине бочки. Это позволяет управлять тепловой профилировкой валков и остаточными напряжениями в полосе.

Установка для подогрева рабочих валков, обеспечивающая разогрев поверхности валков в течение 2 часов (не более) от 20 до 80ºС.

Подогревательная тоннельная газовая печь осуществляет нагрев в течение 45 минут трех рулонов:

Кромка рулонов 100ºС;

На расстоянии 100мм от кромки 70ºС;

Максимальный расход газа 100м³/ч.

Проектная годовая производительность 550000 тонн.

Рис. 3. Схема расположения оборудования 4-х клетевого стана 1400.

1 – загрузочный (шестирулонный) конвейер; 2 – печь подогрева рулонов; 3 – падающая балка; 4 – загрузочная тележка; 5 – разматыватель; 6 - электродвигатели разматывателя; 7 – гильотинные ножницы; 8 – рабочие клети; 9 – редуктор клети; 10 – электродвигатели главных приводов; 11 – стрессометрический ролик; 12 – разгрузочная тележка; 13 – моталка; 14 – редуктор моталки; 15 – электродвигатель моталки; 16 – разгрузочный (восьмирулонный) конвейер; 17 - передающий (шестирулонный) конвейер; 18 – тележка; 19 – перевалочные тележки.



Материал рабочих валков: легированная кованая сталь.

Типовой Хим. состав стали:

C=0.83%; Cr=1.7%; Mo=0.2%; Mn=0.3%; Si=0.4%; Va=0.1%.

Валки имеют среднюю стойкость (рабочие) не менее 20000 тонн, (опорные) не менее 320000 тонн прокатанного металла на валок при нормальных условиях работы и складирования.

Глубина закаленного слоя 40мм (рабочие), 100мм (опорные). Твердость закаленного слоя уменьшается постепенно.

Перед начальной эксплуатацией валков, они должны пройти ульторозвуковой контроль для выявления внутренних дефектов.