Фонарик на солнечных батареях своими руками. Как сделать фонарь на солнечной батарее своими руками

Как извесно, прогресс не стоит на месте. Развитие новых технологий обусловило появление на рынке новых сверхъярких светодиодов, стоимость которых с каждым годом снижается. Появилось и много инновационных изделий на основе этого полупроводникового прибора. Все эти новшества возникают только благодаря одной цели - энергосбережению. Государством, внедряющим повсюду новые ""зеленые технологии"", является Китай (уже перещеголявший в плане инноваций и схемотехники Японию). Рынок просто заполонили светодиодные (и не только) девайсы из Поднебесной, цена которых довольно демократична, по сравнению с аналогичными изделиями европейских производителей. Одним из новаторских устройств,массово ввозимом в нашу страну, является садовый декоративный светодиодный фонарь с зарядкой на солнечной батарее.

Рассмотрим его подробнее. ""Вскрытие"" пациента показало вот что. Питается светильник от NI-MH (никель-металлгидридного) аккумулятора емкостью 600мА*ч напряжением 1,2В.

В качестве осветительного элемента применен обычный сверхяркий светодиод белого свечения; в роли зарядного устройства выступает солнечная панелька размером 5 на 5см, выдающая в погожий солнечный день до 2,3В напряжения. Осмотр печатной платы устройства практически ничего не прояснил - кроме токового дросселя и неизвесной микросхемы, с 4 выводами и надписью на корпусе 5252F на плате ничего нет! Поиск по базам даташитов и базам LED преобразователей (драйверов) тоже ничего не дал.

По всей видимости это очередная инновация китайских мастеров (копирование фирменной микросхемы с упрощением внутренней части).

Так как светильник с одним светодиодом светит довольно тускло (оно и понятно, ведь главная цель такого девайса - декоративная функция) была предпринята попытка модернизации. Во первых, колпак светильника из прозрачного пластика недостаточно рассеивает направленный поток света от диода, поэтому для усиления эффекта рассеивания была предпринята попытка оклеить внутреннюю часть крышки плафона фольгой.

Помимо этого можно посоветовать применить вместо одного светодиода три сверхярких, включенных в паралель, хотя это сократит время свечения светильника с 8 часов до 4-6. Можно пойти другим путем - заменить дроссель на более мощный и диод на матрицу из 4 диодов. Эта модернизация также сокращает время свечения прибора в темное время суток. Если же эксперименты привели к поломке электронной части изделия, то ремонт можно произвести только полностью заменив электронную начинку (ведь микросхемы с такой маркировкой не продаются ни в одном из российских радиомагазинов). Можно полностью заменить внутреннюю схему, применив разработку инженеров из Дании и построив транзисторный преобразователь.

Или обратиться еще к одному западному источнику.

Дроссель для этой схемы придется мотать на ферритовом кольце диаметром 10 и толщиной 3мм. Обмотка содержит две секции по 20 витков провода 0,2-0,3мм. Вообще же тема применения преобразователей для сверхъярких светодиодов довольно обширна и интересна с точки зрения экспериментов.

Что же касается нашего светильника, то он практически вечный (если конечно активно не вмешиваться в его работу). Неисправности, которые могут в нем возникнуть, носят специфику всех приборов, работающих на открытом воздухе - окисление контактов в аккумуляторном отсеке, непропай радиоэлементов и окисление дорожек под действием осаждающейся из воздуха влаги (можно покрыть плату дополнительным слоем цапонлака), выход из строя батареи. Батарею можно заменить на аналогичную Ni-Cd (никель-кадмиевую). Для профилактики батареи желательно хотябы раз в месяц заряжать ее от сетевого зарядного устройства, либо поставить переключатель, для отключения питания схемы светодиода, а аккумулятор зарядить полностью в течении 2-х световых дней (все таки у нас не Африка, бывают и пасмурные дни). Данный декоративный светильник исправно проработал в течении 2-х дачных сезонов (без замены батареи), и при всей своей простоте и неприхотливости является изделием, несущим в себе смысл главной в наше время технологической идеи - энергосбережения!

В заключении хочется напомнить о том, что скоро Новый Год и в продаже появились свежие инновационные разработки от китайских инженеров - светодиодные гирлянды с зарядкой от солнечной энергии. Очень надеюсь что в скором времени на наших страницах появится статья и о таких изделиях!

Мы измерили энергопотребление уличных садовых фонариков на солнечных батареях, а также скорость зарядки на прямом солнце, в облачный день и в тени. Картина получилась интересной, хотя и вполне ожидаемой.

Эта статья рассказывает не столько про конкретные фонарики, сколько вообще про практическую сторону работы светильников на солнечных батареях.

Для проведения эксперимента мы взяли два недорогих фонарика на солнечных батареях. Один из них относительно нового типа (коричневый на фото), коих сейчас в продаже по цене от 40 до 150 руб. абсолютное большинство. Второй (черный на фото) – старого образца, которые с той же высокой плотностью населяли полки магазинов несколько лет назад по аналогичной цене.

Главное отличие фонариков в солнечной батарее. И там и там она пленочного типа, но из разных материалов. Также в старом фонарике был установлен Ni-MH аккумулятор АА емкостью 600 мА·ч, в то время как в новом он меньшего размера (ААА) и емкостью всего 100 мА·ч. Это закономерное удешевление, благодаря которому цена на эти фонарики после скачка доллара изменилась не так сильно.

Энергопотребление у обоих светодиодов в фонариках оказалось одинаковое и составило около 12 мА (~14 мВт·ч). Это значит, что при полностью заряженном аккумуляторе новый фонарик сможет проработать 8-9 часов, а старый (только в теории) 45-50. Но тут важно помнить, что работая в условиях постоянной недозарядки (об этом чуть ниже) Ni-MH аккумуляторы быстро теряют свою емкость, потому более емкий аккумулятор в старом фонарике оказался бы предпочтительнее только с той точки зрения, что он проработал бы на годик подольше.

Теперь разберемся с мощностью панелей и зарядкой.

Эффективность зарядки солнечных батарей

Для оценки эффективности зарядки в разных условиях мы выбрали удачный день: солнце, которое время от времени закрывалось небольшими легкими облаками. Фонарики располагались как на открытом месте, так и в тени садовых деревьев. Напряжение и ток замерялись на клеммах аккумуляторов. Полученные значения мы перевели в количество произведенной энергии, выраженной в мВт·ч. Вот что у нас получилось:

Мощность солнечной батареи у старого фонарика оказалась заметно выше, но это не столь интересно. Куда важнее, и это хорошая новость, что при прямом солнечном свете маленький аккумулятор у нового фонарика способен полностью зарядится примерно за 2,5-3 часа. А теперь плохая новость. Если фонарик размещен в тени или день выдался слегка облачным, то эффективность зарядки упадет в 10 раз. А если на небе тучи, то тут и вовсе не о чем говорить. Аккумулятор заряжаться не будет.

Для тех, кому интересны детали наших замеров показателей работы солнечных батарей, приведем небольшую табличку.

Выводы

Фонарики показали себя вполне работоспособными. Новая модель на прямом солнце способна полностью зарядить встроенный аккумулятор примерно за 3 часа, чего будет достаточно для работы встроенного светодиода в течение 8-9 часов. Модель старого образца мощнее и имеет более емкий аккумулятор, но рассуждать о ней смысла нет, т.к. в продаже таких уже не найти.

Еще один важный момент, это то, что эффективность работы солнечной батареи в облачную погоду падает в 10 раз. А в пасмурную зарядка и вовсе прекращается. То же можно сказать и о размещении фонариков в тени деревьев, где при условии солнечной погоды за целый световой день они не смогут зарядить свой маленький аккумулятор даже наполовину, а при наличии легкой облачности зарядка и вовсе остановится.

Также вам может быть интересно :


Новые технологии значительно упрощают жизнь. Благодаря им появились солнечные светильники, которые используют солнечную энергию для того, чтобы светиться в ночное время. Производители предлагают различные виды светильников, которые разделяются по видам и характеристикам. Садовые светильники на солнечных батареях заряжаются от солнца в дневное время, а их работы хватает надолго, если батарея заряжена полностью. Во многих светильниках есть функция автоматического включения при наступлении темноты.

Виды светильников на солнечных батареях

Те, кто следит за стилем и современными способами освещения своих дачных участков или сада, знают, что в продаже имеется настенный светильник, который работает от солнечной энергии. Чтобы зарядить светильник и подготовить его к работе в вечернее и ночное время, необходимо просто разместить его там, куда попадают солнечные лучи. Если условия заряда батареи соблюдены правильно, энергии хватить на 10 часов беспрерывной работы светильника.

Работа светодиодной лампы зависит от уровня ее заряда – лучше вывешивать лампу на зарядку под прямые солнечные лучи на весь день.

Лучше всего устройства заряжаются при ясной погоде. Срок службы таких ламп варьируется и зависит от качества и устройства. Примерно он составляет от пяти до десяти лет. Существенный минус заключается в том, что в зимнее время, когда солнце неактивно, лампы не заряжаются.


Виды светильников:

  • «Globo». Ночные светильники от этого производителя отличаются надежностью и высоким качеством. Также потребителей порадует дизайнерские решения: светильники имеют различные формы и расцветки.
  • «Старт». Производитель славится тем, то светильники активно заряжаются в любую погоду. Приборы автоматически включаются вечером и выключаются с рассветом.
  • Газонные светильники. Удобное и практичное оборудование. Их используют в качестве декоративного украшения газона. Особенно удобны светильники отсутствием проводов, которые могут мешать при работе с землей. Светильник исправно работают в любых погодных условиях.
  • Светодиодные светильники. Отличаются надежностью, экономичностью, простотой в использовании. За ними не нужно особо ухаживать. Светильники применяют в ландшафтном дизайне.
  • Декоративные светильники. Отличаются обилием форм и цветов.

С использованием светильников на солнечной батарее можно забыть о затратах на электроэнергию. Существуют светильники, которые работают в любую погоду, а их заряда хватает на 12 часов. Особенно популярны светильники, имеющие долговечную батарею. Единственное условие – ее регулярный заряд от солнечного или искусственного света.

Преимущества садового светильника на солнечной батарее

Все солнечные светильники объединяют в три групп: дизайн, качество и поверхность стекла. Каждый солнечный светильник отличается дизайном и конструкцией. Это могут быть болларды, светильники, которые встраивают в ступеньки, приборы для освещения водоемов, декоративные устройства и светильники, используемые для подсветки деревьев.

Фотоэлемент, который используют в светильниках, состоит из поликристаллического кремния, который по качеству хуже монокристаллического кремния, который лучше защищает сам фотоэлемент.

Поверхность стекла светильника может быть гладкой, структурированной и закаленной. Гладкое стекло способствует отражению большого количества прямого света. Структурированное стекло отличается рассеянным излучением. Закаленное стекло считается самым надежным и качественным.


Преимущества светильников:

  • Идеально освещают труднодоступные места.
  • Грамотно распределяют энергетические ресурсы, что способствует их экономии.
  • Светильники могут беспрерывно работать от до 12 часов.

Стоит заметить, что эффективность некоторых светильников значительно снижается в пасмурные и дождливые дни. Светильники отличаются декоративной способностью: с их помощью участок можно украсить красиво и со вкусом. Оригинальные решения можно найти в интернете на сайтах, посвященных ландшафтному дизайну.

Схема садового светильника на солнечной батарее

Управлять садовым светильником можно автоматически. Для этого нужно изучить схему светильника и способы его функционирования. В устройстве схемы садового светильника использован транзистор. Вид транзистора может быть разным: он может быть отечественным или зарубежным. Для того чтобы собрать простой светильник, понадобятся обычные диоды на один кристалл.

Светильник на обычных диодах может беспрерывно работать в течение семи часов при полном накале.

Заряжается светильник от солнечной панели , которая имеет выходные параметры: 5,5 v и 200 mA. С такими параметрами светильник может работать более восьми часов. Изготовить светильник, работающий от солнечной батареи можно самостоятельно.


Элементы солнечных светильников:

  • Батарея, которая накапливает энергию.
  • Светодиодный полупроводник. Он излучает свет, при прохождении по нему электрического тока.
  • Датчик освещенности.
  • Микросхема. Его функция заключается в управлении светодиодного свечения, которое зависит от силы напряжения. Если батарея разрядилась до определенного уровня, он отключает напряжение.
  • Фотоэлемент. Управляет включением светильника и преобразованием световой энергии в электрическую.

На солнечную батарею воздействует ультрафиолет, который позволяет ей вырабатывать электрически ток, который заряжает аккумулятор. Аккумуляторы напрямую питают светодиод, который светиться в ночное время. Если аккумулятор заряжен полностью, обычно время его работы равно восьми часам.

Садовый фонарь своими руками

Садовый светодиодный светильник на солнечной батарее способен работать в автономно режиме, пользуясь зарядом солнечной энергии накопленном ранее. Уличный светильник можно сделать своими руками, для этого нужно знать, какие элементы использовать и как их правильно объединить. При изготовлении светильника и выбора элементов важно обратить внимание на то, в какой местности он будет использоваться.

При использовании светильников, которые заряжаются от солнечной батареи, важно обилие солнечной активности, так как без нее никакого заряда не произойдет.

Чтобы собрать схему светильника, необходимо приобрести или вытравить специальную печатную плату. Лампы для светильника лучше выбирать с мощностью в 3Вт: это обеспечит нормальную освещенность. В качестве корпуса некоторые мастера используют колпачок от дезодоранта.


Характеристики элементов:

  • Резисторы от 47 до 56 Ом;
  • Диод ух8016;
  • Транзистор.

Важно собрать схему сразу правильно, иначе его ремонт или переделка займет много времени. Садовые светильники могут работать от солнца и не батарейках. Ночник или фонарик станет прекрасным украшением для sada, при этом выполняя свое прямое предназначение.

Многие, наверное, задумывались о том, как осветить придомовую территорию так, чтобы было и уютно, и эстетично. Но ведь это дополнительные затраты на электроэнергию. Да и к тому же, чтобы подвести напряжение к каждому из уличных светильников, придется испортить ландшафт, прокопать канавы, в которые будет уложен кабель. Ну а висящие по воздуху провода от одного садового светильника к другому – это совсем некрасиво.

И вот тут возникает мысль: «А ведь можно установить фонарь на солнечной батарее, и тогда электрическая энергия будет производиться таким бесплатным генератором, как солнце!». Естественно, человек идет в магазин за подобными приборами и, глядя на цены этих световых приборов, забывает о своем желании, потому как их стоимость очень высока.

Но ведь есть же руки и голова, и этот прибор создали такие же люди, а значит, вполне по силам собрать садовый фонарь на солнечных батареях своими руками.

Попробуем разобраться, возможно ли это, и насколько сложна эта работа.

Подготовительные работы

Конечно, идеальным будет вариант, если имеется неисправный прибор – помимо того, что станет понятным его устройство, можно заодно понять, как своими руками отремонтировать солнечный фонарь, но и в реализации этой идеи есть недостаток. Естественно, можно взять несколько дешевых садовых фонариков, требующих ремонта, и заменить их солнечные батареи, но модернизация их китайской начинке все равно будет необходима. А потому их база нужна лишь для обучения, т. к. отремонтированный фонарик не прослужит дольше сделанного с нуля.

Прежде чем приступить к созданию светильника на солнечных батареях, необходимо разобраться в конструкции подобных устройств.

Хотя все фонари с виду разные, схема их работы очень проста. Состоит она из солнечной батареи (панели), аккумулятора, преобразователя напряжения и светодиода или модуля.

Схема подобного светильника будет понятна любому начинающему радиолюбителю и выглядит она следующим образом:


И вот уже разобравшись со схемой и поняв принцип работы фонаря, работающего на энергии, которую вырабатывают солнечные элементы, можно определиться с тем, какая яркость требуется, какие выбрать световые элементы, и в соответствии с этим выбирать аккумулятор и солнечную панель.

Для вполне подойдут ультраяркие светодиоды Cree, по 1–1.5 вольт в количестве 3 или 4 штук на один светильник. При таких элементах достаточно будет батареи с емкостью 3 000 мА·ч и выходным напряжением в 3.6 вольт. На подобный элемент питания будет подаваться зарядка от солнечной панели в течение 8–10 часов, чего вполне достаточно для работы выбранных светодиодов до 12 часов.

Ну и, естественно, сама солнечная панель. Дело в том, что солнечная батарея из садовых светильников, выпускающихся в наше время, очень мала. Подходящей станет батарея, размер которой 65 х 65 х 3 мм, с выходным напряжением в 4.4 В, 90 мА. Она вполне может обеспечить необходимое питание.

Электронный блок управления. Теперь необходимо собрать «голову» светильника, а именно сам блок управления. Для этого понадобится:

  • четыре резистора МЛТ 22 кОм;
  • два транзистора КТ503;
  • один диод (оптимальным будет Шоттки 11DQ04).

Т. к. все это разместится на одной плате, то конечно лучше ее вытравить самому. Но есть вариант и аккуратнее, и менее трудозатратный. Сейчас в магазинах можно приобрести универсальные макетные платы. В дополнение под рукой при работе должен быть и многожильный медный провод для создания дорожек.

Итак, когда все элементы будущего электронного блока управления в сборе, можно приступить к пайке. Необходимо собрать следующую схему.


В подобную схему свободно включаются 4 светодиода. И если качество сборки на высоком уровне, то прослужит такой блок управления многие годы.

Сборка фонаря

Форму светильника на солнечной батарее, естественно, каждый придумывает сам, здесь уже полный простор мысли и фантазии мастера. При собранной схеме электронного блока управления подключить к нему светодиоды проблем не составит. Конечно, можно в разрыв питания светодиодов включить обычный выключатель, но намного удобнее будет, если вместо него установить фотоэлемент параллельно с датчиком движения. Тогда при наступлении сумерек светильник на солнечных батареях, сделанный своими руками, автоматически включится, а с рассветом выключится. Либо же будет срабатывать на проходящего человека, что тоже удобно.

Также возможно и подключение контроллера при использовании светодиодов RGB, тогда солнечные фонари будут регулироваться еще и по цвету свечения, причем дистанционно, но в таком случае нужно понимать, что и ему понадобится питание. Хотя этот вопрос тоже решаем. Ведь выбор солнечных панелей на прилавках магазинов электротехники в наши дни необычайно широк. А это значит, что подобрать подходящие будет делом несложным.


Дополнительные возможности использования солнечных батарей в домашних условиях

Выводы

Конечно, каждый решает сам, в меру своей занятости и финансового положения, как ему поступить – покупать подобный светильник или сделать его своими руками. Но ведь дело даже не в сумме, потраченной на новые фонари, хотя здесь и выходит экономия более чем в 4 раза.

Разве не приятно осознавать, что на участке дома или в квартире работает светильник, который создан не на заводе, а своими руками, как говорится «на коленке»? Наверное – это главное, из-за чего следует попробовать самостоятельно собрать садовый светильник на солнечной батарее.

Грамотно сделанное освещение парка или дачного участка способно превратить безжизненное унылое пространство в фантастическую сказку. Садовый светодиодный светильник схема которого рассмотрена ниже используется для организации садово-паркового освещения и подсветки. Светильники при этом выполняют двойную функцию: они являются источником искусственного освещение и предметами декора вашего сада

Купил в китайском интернет магазине готовый садовый светодиодный светильник, но его монтаж оказался предельно упрощен, провода отваливались после двух изгибов, узлы были закреплены каплями термоклея или отламывающимися пластмассовыми выступами - все указывало на то, что передо мной одноразовая игрушка. Расскажу лишь о самой схеме и конструкции, в расчете на ее возможное самостоятельное повторение читателями и использование заложенных там решений в других устройствах.

Лампочку в фонаре заменял светодиод небольшой мощности, бело-зеленого свечения. Аккумуляторной батареи тоже не было - под шляпкой грибка обнаружился всего один элемент размера АА емкостью 800 мА/час, хотя место было предусмотрено под два элемента (экономия, однако!). Не густо, и шансы на использование фонарика источником питания для какого бы то ни было устройства резко упали, ведь номинальное напряжение щелочного аккумуляторного элемента - всего 1,2 В.

Сразу же возник вопрос: а как же может гореть светодиод при таком питании, ведь напряжение зажигания самых распространенных красных светодиодов - около 1,8 В, а зеленых и белых еще больше - до 3 В? Значит, на маленькой печатной плате (25x30 мм), содержащей три транзистора и не более десятка других деталей, был собран еще и повышающий инвертор!

Прежде чем браться за тяжкий труд по восстановлению принципиальной схемы, срисовывая ее с печатной платы, захотелось исследовать возможности самого главного и ценного элемента конструкции - солнечной панели. Ее размеры около 70x70 мм, а сквозь защитное стекло ясно видны 7 параллельных полосок шириной около сантиметра - 7 элементов панели.

Как известно, кремниевые солнечные элементы при их освещении развивают ЭДС порядка 0,5... 0,6 В, поэтому следовало ожидать ЭДС батареи из семи элементов около 4 В. Так и оказалось - в тени и при облачном небе панель развивала 3,5 В, а на ярком солнце - 4,5 В.

Соединенная с одним аккумуляторным элементом, такая панель работает в режиме почти короткого замыкания. Это не страшно, поскольку внутреннее сопротивление панели значительно, и ток короткого замыкания не превышает 60 мА даже при ярком солнечном свете. Но КПД заряда невелик, и для полной зарядки аккумуляторного элемента нужно как минимум два солнечных летних дня (20...40 часов). Никаких устройств, предохраняющих элемент от перезарядки при выключенном светодиоде, обнаружено не было.

Другой важный элемент устройства - датчик освещенности, собственно и позволяющий фонарику включаться в темное время суток и выключаться днем. Это фоторезистор, оформленный в плоском цилиндрическом корпусе с двумя выводами, размерами не больше транзистора. Его отдельное исследование показало, что темновое сопротивление превосходит 2 МОм, а на свету резко уменьшается - в тени до 10...20 кОм, а при ярком солнечном свете даже до сотен Ом.

Обратимся теперь к принципиальной схеме устройства. Солнечная панель SP постоянно соединена с аккумуляторным элементом ВАТ через диод D1 (обозначения элементов сохранены такими же, как на печатной плате, имеющей название SY-H019B). Диод пропускает только зарядный ток от панели к аккумулятору и предотвращает его разряд через внутреннее сопротивление панели в темноте. Установка такого защитного диода обязательна в любых устройствах с солнечными панелями.

На транзисторе Q1 собран ключ, срабатывающий в зависимости от степени освещенности датчика PR. В темноте транзистор открыт током смещения, протекающим от источника питания через резистор R1. На свету датчик замыкает этот ток «на себя», напряжение базы становится менее 0,5 В, и транзистор закрывается. Для более четкого срабатывания ключа он охвачен цепью положительной обратной связи через резистор R4 - то, что получилось из транзисторов Q1 и Q2, иногда называют триггером Шмитта. Он имеет некоторый гистерезис, и включение фонарика происходит при меньшей освещенности, чем его выключение.

Транзисторы Q2 и Q3 образуют повышающий инвертор и включены последовательно, один за другим, по схеме двухкаскадного усилителя. Усилитель охвачен цепью положительной обратной связи через емкостной делитель C1, С2 и поэтому превращается в релаксационный генератор импульсов. Нагрузкой транзистора Q3 служит катушка индуктивности L1, запасающая энергию во время открытого состояния транзисторов Q2 и Q3. Но это состояние не может продолжаться долго, поскольку ток через L1 нарастает, ее ферритовый сердечник входит в насыщение, индуктивность уменьшается, а напряжение на коллекторе Q3 повышается. Это повышение немедленно передается через конденсатор С2 на базу Q2 и запирает его. Вслед за ним запирается Q3, и импульс тока через транзисторы прекращается.

Но ток через катушку индуктивности L1 не может прекратиться мгновенно. Он продолжает идти и формирует на коллекторе Q3 положительный выброс напряжения, который может во много раз превосходить напряжение питания. Но у нас он просто открывает светодиод LED, и энергия, запасенная в катушке, превращается в световую. Пауза между импульсами продолжается до тех пор, пока не израсходуется энергия магнитного поля катушки и затем не разрядятся конденсаторы Cl, С2.

Дальнейшее поведение генератора зависит от состояния Q1. Когда он заперт днем, то смещения на базе Q2 нет, оба транзистора генератора закрыты и импульсы генерироваться не будут. Если же Q1 открыт ночью, то ток смещения поступает на базу Q2 через резистор R3, и генератор будет продолжать генерировать импульсы - светодиод загорится. Для отключения светодиода служит выключатель SW - если он разомкнут, то генерации импульсов нет, и светодиод не горит, поскольку напряжение аккумуляторного элемента меньше его напряжения зажигания.

Кстати говоря, если бы изготовители не экономили, а поставили два аккумуляторных элемента, а также 3-вольтовый белый светодиод, то он все равно бы не горел без генерации импульсов инвертором, поскольку номинальное напряжение батареи было бы 2x1,2=2,4 В. Зато в данной схеме он служил бы хоть каким-то предохранителем от перезаряда аккумуляторов, ограничивая напряжение на каждом элементе на уровне 1,5 В, то есть загораясь при этом напряжении даже на свету.

В заключение несколько практических советов для желающих повторить садовый светодиодный светильник и его схему. Для нее вполне подойдут отечественные транзисторы КТ315 и КТ361 с любыми буквенными индексами. Диод D1 может быть любым, с предельным током 40...60 мА. Марка датчика - фоторезистора неизвестна, но наверняка можно подобрать что-нибудь подходящее из имеющихся, измерив сопротивление на свету и в темноте с помощью тестера. Катушка L1 миниатюрная, по виду напоминающая резистор, индуктивность ее также неизвестна, но полагаю, что нескольких миллигенри будет достаточно. Можно намотать 100...150 витков на ферритовом колечке или использовать одну из обмоток малогабаритного трансформатора.

В схеме автоматического фонаря в качестве датчика применен фоторезистор, а в качестве источника энергии шести вольтовая солнечная батарея мощностью 5 Вт, от которой в течение светового дня заряжается свинцовый аккумулятор через диод D9, защищающий схему в случае если перепутать плюс и минус.

Если дневного света хватает, транзистор закрыт напряжением с выхода микросхемы LM555 ко входу которой подключен фотодатчик (фоторезистор LDR диаметром 10 мм). Подстроечным резистором P1 задают необходимую чувствительность к свету. Когда естественный световой поток снижается, транзистор открывается и загораются сверяркие белые светодиоды (D1…D8). При восстановлении требуемого уровня освещения схема переходит в исходное состояние и светодиоды тухнут.

Эту схему в следствие ее простоты я собрал на универсальной макетной плате и разместил в прозрачном корпусе из органического стекла. На крышке закрепил панельку солнечной батареи и фоторезистор. Учтите на фотодатчик LDR не должен попадать прямой солнечный поток.