Что измеряет вольтметр? Прибор для измерения напряжения. Измерение напряжения

В процессе эксплуатации бытовых электроприборов возникают ситуации, когда требуется измерение напряжения. Для проверки работоспособности розеток не всегда достаточно однополюсного указателя: наличие фазы он проверит, а вот для диагностики обрыва нулевого провода этот метод не поможет. То же самое относится и к неисправностям осветительных приборов. Для определения целостности удлинителей и шнуров питания бытовых приборов метод измерения напряжения является более наглядным.

При помощи вольтметра выявляются такие неисправности, как некачественное контактное соединение, снижающее величину напряжения на нагрузке. Указатель покажет наличие на ней фазы, но из-за недостаточной величины напряжения электроприбор может работать с пониженной мощностью (обогреватель) или не работать совсем (телевизор, компьютер, стиральная машина).

Только измерением можно определить наличие повышенного или пониженного напряжения в электрической сети. Завышенное напряжение – частая причина поломок бытовой техники. Электроприборы начинают потреблять больший ток и работать в режиме, не предусмотренном производителем. Следствие этого – сокращение ресурса работы. Лампы накаливания при завышенном напряжении не только быстрее перегорают, но и взрываются при включении.

Заниженное значение напряжения в сети не менее опасно для бытовых электроприборов. Электроинструмент перегревается, а компрессор холодильника выходит из строя.

Причины и методы измерений колебаний напряжения

Согласно ГОСТ 13109 величина напряжения в сети не должны выходить из диапазона 198 – 242 В (220В ± 10%). Если у вас часто выходят из строя лампы, периодически изменяется их световой поток или при загадочных обстоятельствах выходит из строя бытовая техника, нужно проверить величину напряжения в электропроводке. Во избежание ненужных поломок электроприборов, до окончания проверки лучше отключить от сети все лишнее.

Измерения производятся либо постоянным наблюдением за подключенным к сети вольтметром или мультиметром, либо периодическим (раз в полчаса) измерением в фиксацией показаний. Величина напряжения в сети не постоянна и изменяется в зависимости от степени загруженности. Самое высокое значение будет ночью, когда все спят и не пользуются электроприборами.

При колебаниях и провалах напряжения, возникающих на короткое время, для контроля полезно использовать лампы накаливания. Если лампочка вдруг потускнеет или ярче загорится – в тот же момент производится измерение напряжения в сети. Причиной таких колебаний является подключение к сети мощных потребителей, снижающих напряжение в фазе, к которой они подключены. В оставшихся фазах напряжение может наоборот – вырасти.

Посадки напряжения, вызванные работой сварочного аппарата, легко выявляются при помощи лампы накаливания. Она будет снижать яркость свечения при сварке и гореть совсем тускло в моменты «залипания» электрода. Тот, кто хоть иногда пользовался сварочным аппаратом, по ритму изменений яркости лампы безошибочно определит, что провалы напряжения вызваны именно им.

Самая серьезная причина изменения величины напряжения – обрыв нуля в трехфазной питающей сети. Все потребители дома или поселка равномерно распределяются по трем фазам. При наличии нуля напряжение у всех примерно одинаковое и незначительно зависит от нагрузки по фазам. Но при его обрыве напряжение перераспределяется таким образом, что на фазе с минимальной нагрузкой напряжение становится наибольшим. При нагрузке, близкой к нулю, напряжение приближается к 380 В.

При подозрении на обрыв нуля (резкие изменения яркости свечения ламп, как в большую, так и в меньшую сторону, изменение тона работы компрессора холодильника, частоты вращения электроинструмента), немедленно обесточьте всю квартиру и измерьте напряжение на вводе.

Линейные и фазные напряжения

При выполнении измерений в электрощитах полезно знать, чем отличается линейное напряжение от фазного. На вход трехфазных щитков приходят кабели с четырьмя-пятью жилами. Три жилы – это «фазы», четвертая жила четырехжильного кабеля – совмещенный нулевой проводник. Назначение двух оставшихся жил пятижильного кабеля – рабочий ноль и защитный ноль.

Напряжение между любыми двумя фазами называется линейным и равно 380 В. Напряжение между фазой и нулевым рабочим (совмещенным) проводником называется фазным и равно 220 В. Напряжение между фазой и нулевым защитным проводником в нормальном режиме работы сети равно фазному, между защитным и рабочим проводниками – нулю.

Однофазные щитки получают питание от двух- или трехжильных кабелей, все автоматические выключатели них – однополюсные. Напряжение в них измеряется между фазой и нулем и оно – только фазное, равное 220 В.

Как измерить напряжение?

Для измерений используются приборы:

вольтметр – специализированный прибор, предназначенный только для измерения напряжения;


мультиметр – комбинированный цифровой прибор, предназначенный для измерения ряда электрических величин ();


тестер – комбинированный аналоговый прибор, выполняющий функции мультиметра., но в отличие от него имеющий шкалу со стрелкой.


Перед использованием нужно обратить внимание на состояние изоляции соединительных проводов прибора и изучить инструкцию по его эксплуатации. При использовании мультиметров и тестеров – правильно выбрать род тока и предел измерения.

Род тока Обозначение на мультиметре Обозначение на тестере
Переменный АС ~
постоянный DC =

Предел измерения всегда первоначально выставляется больше ожидаемого. При измерении напряжений в трехфазном щитке он не должен быть ниже 500 В.

При измерениях напряжений источников постоянного тока нужно соблюдать полярность подключения прибора. Для тестера это очень важно, так как при ошибке в подключении его стрелка отклонится в обратную сторону. Мультиметр при обратной полярности покажет на индикаторе перед измеренным значением знак «–». И не забудьте переключить прибор в режим измерения постоянного напряжения.

Основной единицей измерения электрического напряжения является вольт. В зависимости от величины напряжение может измеряться в вольтах (В), киловольтах (1 кВ = 1000 В), милливольтах (1 мВ = 0,001 В), микровольтах (1 мкВ = 0,001мВ = 0,000001 В). На практике, чаще всего, приходится сталкиваться с вольтами и милливольтами.

Существует два основных вида напряжений – постоянное и переменное . Источником постоянного напряжения служат батареи, аккумуляторы. Источником переменного напряжения может служить, например, напряжение в электрической сети квартиры или дома.

Для измерения напряжения используют вольтметр . Вольтметры бывают стрелочные (аналоговые) и цифровые .

На сегодняшний день стрелочные вольтметры уступают пальму первенства цифровым, так как вторые более удобны в эксплуатации. Если при измерении стрелочным вольтметром показания напряжения приходится вычислять по шкале, то у цифрового результат измерения сразу высвечивается на индикаторе. Да и по габаритам стрелочный прибор проигрывает цифровому.

Но это не значит, что стрелочные приборы совсем не применяются. Есть некоторые процессы, которые цифровым прибором увидеть нельзя, поэтому стрелочные больше применяются на промышленных предприятиях, лабораториях, ремонтных мастерских и т.п.

На электрических принципиальных схемах вольтметр обозначается кружком с заглавной латинской буквой «V » внутри. Рядом с условным обозначением вольтметра указывается его буквенное обозначение «PU » и порядковый номер в схеме. Например. Если вольтметров в схеме будет два, то около первого пишут «PU 1 », а около второго «PU 2 ».

При измерении постоянного напряжения на схеме указывается полярность подключения вольтметра, если же измеряется переменное напряжение, то полярность подключения не указывается.

Напряжение измеряют между двумя точками схемы: в электронных схемах между плюсовым и минусовым полюсами, в электрических схемах между фазой и нулем . Вольтметр подключают параллельно источнику напряжения или параллельно участку цепи — резистору, лампе или другой нагрузке, на которой необходимо измерить напряжение:

Рассмотрим подключение вольтметра: на верхней схеме напряжение измеряется на лампе HL1 и одновременно на источнике питания GB1 . На нижней схеме напряжение измеряется на лампе HL1 и резисторе R1 .

Перед тем, как измерить напряжение, определяют его вид и приблизительную величину . Дело в том, что у вольтметров измерительная часть рассчитана только для одного вида напряжения, и от этого результаты измерений получаются разными. Вольтметр для измерения постоянного напряжения не видит переменное, а вольтметр для переменного напряжения наоборот, постоянное напряжение измерить сможет, но его показания будут не точными.

Знать приблизительную величину измеряемого напряжения также необходимо, так как вольтметры работают в строго определенном диапазоне напряжений, и если ошибиться с выбором диапазона или величиной, прибор можно повредить. Например. Диапазон измерения вольтметра составляет 0…100 Вольт, значит, напряжение можно измерять только в этих пределах, так как при измерении напряжения выше 100 Вольт прибор выйдет из строя.

Помимо приборов, измеряющих только один параметр (напряжение, ток, сопротивление, емкость, частота), существуют многофункциональные, в которых заложено измерение всех этих параметров в одном приборе. Такой прибор называется тестер (в основном это стрелочные измерительные приборы) или цифровой мультиметр .

На тестере останавливаться не будем, это тема другой статьи, а сразу перейдем к цифровому мультиметру. В основной своей массе мультиметры могут измерять два вида напряжения в пределах 0…1000 Вольт. Для удобства измерения оба напряжения разделены на два сектора, а в секторах на поддиапазоны: у постоянного напряжения поддиапазонов пять, у переменного — два.

У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 200m , 2V , 20V , 200V , 600V . Например. На пределе «200V» измеряется напряжение, находящееся в диапазоне 0…200 Вольт.

Теперь сам процесс измерения .

1. Измерение постоянного напряжения.

Вначале определяемся с видом измеряемого напряжения (постоянное или переменное) и переводим переключатель в нужный сектор. Для примера возьмем пальчиковую батарейку, постоянное напряжение которой составляет 1,5 Вольта. Выбираем сектор постоянного напряжения, а в нем предел измерения «2V», диапазон измерения которого составляет 0…2 Вольта.

Измерительные щупы должны быть вставлены в гнезда, как показано на нижнем рисунке:

красный щуп принято называть плюсовым , и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;
черный щуп называют минусовым или общим и вставляется он в гнездо, напротив которого стоит значок «СОМ». Относительно этого щупа производятся все измерения.

Плюсовым щупом касаемся положительного полюса батарейки, а минусовым — отрицательного. Результат измерения 1,59 Вольта сразу виден на индикаторе мультиметра. Как видите, все очень просто.

Теперь еще нюанс. Если на батарейке щупы поменять местами, то перед единицей появится знак минуса, сигнализирующий, что перепутана полярность подключения мультиметра. Знак минуса бывает очень удобен в процессе наладке электронных схем, когда на плате нужно определить плюсовую или минусовую шины.

Ну а теперь рассмотрим вариант, когда величина напряжения неизвестна. В качестве источника напряжения оставим пальчиковую батарейку.

Допустим, мы не знаем напряжение батарейки, и чтобы не сжечь прибор измерение начинаем с самого максимального предела «600V», что соответствует диапазону измерения 0…600 Вольт. Щупами мультиметра касаемся полюсов батарейки и на индикаторе видим результат измерения, равный «001 ». Эти цифры говорят о том, что напряжения нет или его величина слишком мала, или выбран слишком большой диапазон измерения.

Опускаемся ниже. Переключатель переводим в положение «200V», что соответствует диапазону 0…200 Вольт, и щупами касаемся полюсов батарейки. На индикаторе появились показания равные «01,5 ». В принципе этих показаний уже достаточно, чтобы сказать, что напряжение пальчиковой батарейки составляет 1,5 Вольта.

Однако нолик, стоящий впереди, предлагает снизиться еще на предел ниже и точнее измерить напряжение. Снижаемся на предел «20V», что соответствует диапазону 0…20 Вольт, и снова производим измерение. На индикаторе высветились показания «1,58 ». Теперь можно с точностью сказать, что напряжение пальчиковой батарейки составляет 1,58 Вольта.

Вот таким образом, не зная величину напряжения, находят ее, постепенно снижаясь от высокого предела измерения к низкому.

Также бывают ситуации, когда при измерении в левом углу индикатора высвечивается единица «1 ». Единица сигнализирует о том, что измеряемое напряжение или ток выше выбранного предела измерения. Например. Если на пределе «2V» измерить напряжение равное 3 Вольта, то на индикаторе появится единица, так как диапазон измерения этого предела всего 0…2 Вольта.

Остался еще один предел «200m» с диапазоном измерения 0…200 mV. Этот предел предназначен для измерения совсем маленьких напряжений (милливольт), с которыми иногда приходится сталкиваться при наладке какой-нибудь радиолюбительской конструкции.

2. Измерение переменного напряжения.

Процесс измерения переменного напряжения ни чем не отличается от измерения постоянного. Отличие состоит лишь в том, что для переменного напряжения соблюдать полярность щупов не требуется.

Сектор переменного напряжения разбит на два поддиапазона 200V и 600V .
На пределе «200V» можно измерять, например, выходное напряжение вторичных обмоток понижающих трансформаторов, либо любое другое находящееся в диапазоне 0…200 Вольт. На пределе «600V» можно измерять напряжения 220 В, 380 В, 440 В или любое другое находящееся в диапазоне 0…600 Вольт.

В качестве примера измерим напряжение домашней сети 220 Вольт.
Переводим переключатель в положение «600V» и щупы мультиметра вставляем в розетку. На индикаторе сразу появился результат измерения 229 Вольт. Как видите, все очень просто.

И еще один момент.
Перед измерением высоких напряжений ВСЕГДА лишний раз убеждайтесь в исправности изоляции щупов и проводов вольтметра или мультиметра , а также дополнительно проверяйте выбранный предел измерения . И только после всех этих операций производите измерения . Этим Вы убережете себя и прибор от неожиданных сюрпризов.

А если что осталось не понятно, то посмотрите видеоролик, где показано измерение напряжения и силы тока с помощью мультиметра.

Приборы для измерения напряжения и тока можно классифицировать по различным признакам:

  • - по типу отсчетного устройства (аналоговые и цифровые);
  • - по методу измерения (непосредственной оценки (прямого действия) и сравнения с мерой);
  • - по значению измеряемого напряжения (пиковых значений, сред- невыпрямленных значений, среднеквадратических значений);
  • - по виду входа (с открытым или закрытым).

В настоящее время в эксплуатации находится большое количество электромеханических и электронных приборов для измерения напряжений и токов. Рассмотрим принципы их построения.

Электромеханические вольтметры и амперметры

Электромеханические вольтметры и амперметры относятся к аналоговым приборам прямого действия, в которых электрическая измеряемая величина непосредственно преобразуется в показание отсчетного устройства.

В простейшем случае электромеханические вольтметры и амперметры представляют собой измерительный механизм с отсчетным устройством (см. гл. 1), снабженный входными зажимами для подключения к объекту измерения.

Обобщенную структурную схему электромеханического вольтметра (амперметра) можно представить в виде последовательно соединенных входной измерительной цепи и измерительного механизма с отсчетным устройством. Заметим, что сочетание измерительного механизма и отсчетного устройства принято называть измерителем.

Входная измерительная цепь (входное устройство) содержит, как правило, один или несколько измерительных преобразователей, с помощью которых измеряемая величина X преобразуется в величину Y, удобную для воздействия на измерительный механизм.

Наиболее часто в электромеханических приборах используют масштабные и нормирующие измерительные преобразователи, а также преобразователи значений величин (см. гл. 1).

Для измерения напряжений и токов могут применяться практически большинство известных типов измерительных механизмов (ИМ).

Для измерения постоянных напряжений в широком диапазоне значений (от долей милливольт до сотен вольт) используют электромеханические вольтметры с магнитоэлектрическим измерительным механизмом (МЭИМ). Эти приборы имеют сравнительно высокий класс точности (до 0,05), однако их входное сопротивление не превышает десятков тысяч ом, что может приводить к значительным систематическим погрешностям. Систематические погрешности вольтметров с МЭИМ имеют также и температурный характер вследствие зависимости сопротивления рамки прибора от температуры окружающей среды.

Реже для измерения постоянных напряжений используют электромеханические вольтметры с электростатическим ИМ (ЭСИМ), электромагнитным ИМ (ЭМИМ) и электродинамическим ИМ (ЭДИМ).

Вольтметры с ЭСИМ обычно используют для измерения больших напряжений (киловольтметры), а вольтметры с ЭДИМ применяют в качестве образцовых приборов при проверке измерительных приборов более низкого класса точности.

Для измерения постоянных токов в широком диапазоне значений (10 _7 ...50 А) наиболее широко, также как при измерении постоянных напряжений, используют электромеханические приборы (амперметры) с МЭИМ. Для этих приборов также характерна температурная систематическая погрешность (особенно при использовании шунтов), так как в этом случае из-за различных значений температурных коэффициентов материала рамки и шунта происходит перераспределение протекающих через них токов. Для измерения постоянных токов используют также амперметры с ЭМИМ и ЭДИМ.

Измерение переменных напряжений проводят вольтметрами с ЭМИМ, ЭДИМ, ФДИМ, ЭСИМ, термоэлектрическими приборами, а также выпрямительными вольтметрами, т.е. вольтметрами, имеющими измерительный механизм магнитоэлектрической системы и выпрямитель (преобразователь), включенный на входе ИМ.

Переменные токи измеряют термоэлектрическими и выпрямительными амперметрами, а также амперметрами, имеющими электромагнитные и электродинамические ИМ. Малые переменные токи измеряют обычно выпрямительными амперметрами. Наиболее широкий диапазон измеряемых переменных токов обеспечивают выпрямительные амперметры, они чаще используются для измерения малых токов. Наиболее широкий частотный диапазон измеряемых токов обеспечивают амперметры термоэлектрической системы.

У большинства электромеханических приборов входное сопротивление невелико (килоомы), поэтому они пригодны для измерения напряжения только в низкоомных цепях. В цепях с высокоомными нагрузками (мегаомы) эти приборы (за исключением электростатических) использовать нельзя, так как при их включении шунтируется нагрузка и тем самым изменяется электрический режим цепи. Кроме того, типовыми недостатками для аналоговых электромеханических приборов являются малый диапазон частот, в котором они дают достоверные показания, большие входные емкости и индуктивности, зависимость входного сопротивления от частоты.

На практике широкое распространение получили универсальные электромеханические приборы для измерения постоянных и переменных напряжений и токов, а также сопротивлений постоянному току - авометры (мультиметры). Они представляют собой сочетание добавочных резисторов или шунтов, преобразователей значений измеряемых переменных токов и напряжений (полупроводниковых выпрямителей) и ИМ магнитоэлектрической системы с отсчетным устройством.

Вариант схемы авометра при измерении напряжения постоянного тока показан на рис. 5.4.

Рис. 5.4.

Переключателем осуществляется изменение диапазона измерений, однако входное сопротивление вольтметра, отсчитанное в [Ом/В], при изменении диапазона обычно остается постоянным за счет подбора резисторов.

Например, если Л, = 15 МОм, Я 2 = 4 МОм, /?, = 800 кОм, /? 4 = 150кОм,Л 5 = 48 кОм, а диапазоны соответственно 1000,250,50, 10, 2,5 В, то при сопротивлении обмотки прибора 2 кОм входное сопротивление прибора в любом положении переключателя диапазонов будет равно 20 кОм/В.

Недавно один знакомый в каком-то бытовом разговоре услышал слово «вольтметр» и спросил, что это такое. Итак, освежим школьные знания.

У нас в доме, на работе и на улице в наше время все зависит от электроэнергии. Мы постоянно пользуемся электрическим током — переменным и постоянным. Ток — это направленное движение носителей заряда под действием электрического поля. Так вот, напряжение, или разность потенциалов — это физическая величина, равная работе электрического поля, которую оно совершает, перенося единичный заряд из одного места в другое.

Когда мы говорим о гальваническом элементе, где происходят внутренние химические процессы, или турбине, которую вращают воды реки, то употреблять выражение «разность потенциалов» некорректно, ведь работу по перемещению заряда производят сторонние силы, имеющие химическую или механическую природу. Для таких случаев используется понятие электродвижущей силы (ЭДС). Именно этот показатель пишут на батарейках, которые продаются на кассе в магазине, и при подключении вольтметра к клеммам без подключения цепи с нагрузкой мы увидим именно его.

Измеряются и ЭДС, и напряжение в вольтах. Формально размерность этой единицы объясняется так: разность потенциалов между точками, А и В равна 1 В, если для перемещения заряда в 1 кулон из точки, А в точку В мы потратим 1 джоуль работы. От этой единицы — вольта — и происходит бытовое название напряжения, когда его измеряют: вольтаж.

Как работает вольтметр

Если нам надо измерить напряжение, значит, необходимо сделать так, чтобы ток через измерительный прибор не проходил. Поэтому к работающей цепи мы подключаем прибор параллельно. Цепь продолжает работать, а прибор должен иметь очень высокое последовательно подключенное сопротивление, чтобы его показания были как можно более точными. В простейшем варианте прибор состоит из магнитной системы, в которой находится подвижная рамка-катушка. На этой рамке закреплены спиральные пружинки, которые создают противодействующий момент и стрелка.

Такие простейшие магнитоэлектрические приборы обычно все видели в детстве. Кстати, прибор для измерения тока— амперметр — устроен так же, только нагрузка в нем маленькая и ставится параллельно, а сам прибор ставится в цепь последовательно.

Существуют также электромагнитные приборы (там взаимодействуют неподвижная катушка и подвижный сердечник) и электродинамические (там работают две катушки).

Помимо этих трех видов, используются также вольтметры с иными принципиальными схемами, но они имеют более узкие области применения. К таким приборам относятся термоэлектрические (в них используется свойство тока нагревать проводник) и выпрямительные (в которых скомбинирован диодный выпрямитель и магнито-электрический механизм).

Все эти приборы имеют одно общее — шкалу, по которой мы и видим результат измерений. Чем больше измеряемый параметр, тем больше отклоняется стрелка. Приборы такого рода называются аналоговыми. Недостаток их очевиден: при длительном использовании механизм имеет свойство изнашиваться, показания часто зависят от условий окружающий среды, да и удобнее информацию воспринимать с экрана, где показываются нужные нам цифры. И тут нам на помощь приходят цифровые вольтметры.

Принцип отображения результата измерений

Особенностью цифровых измерительных приборов является то, что аналоговый сигнал (если отобразить его на графике, то получится прямая линия при постоянном напряжении, и синусоида — при переменном) преобразуется в цифровой, после чего попадает на счетчик и экран, где мы и видим результат измерений. Реализуется эта схема при помощи микросхем, ассортимент которых в настоящее время позволяет производить самые разнообразные приборы — например, для измерения амплитуды переменного напряжения, импульсные, фазочувствительные и т. п.

Классификация

При всем своем разнообразии эти измерительные приборы можно классифицировать по нескольким параметрам. Это поможет вам выбрать нужный именно вам, если вы соберетесь его приобрести.

Итак, вольтметры можно классифицировать по:

По принципу работы вольтметры бывают электромеханические и электронные. Первые включают в себя простые приборы, описанные в предыдущей главе — магнитоэлектрические, электродинамические, электромагнитные, термоэлектрические, выпрямительные и электростатические. Ко вторым — приборы с цифровым и аналоговым преобразованием сигнала и выводом его на панель.

По сфере своего применения приборы изготовляются для измерения постоянного тока, переменного тока, универсальные, импульсные, фазочувствительные и селективные.

По конструкции они бывают переносные, представляющие собой устройства с «крокодильчиками» (их можно положить в сумку, а то и в карман) и стационарные, которыми пользуются в помещении. В число последних включаются также щитовые: они предназначены для постоянной установки в приборную панель.

Класс точности на измерительных приборах проставляется цифрой, и не все обращают на это внимание, а зря. Иногда точность прибора имеет принципиальное значение.

Цифра, не обведенная кружком, показывает относительную погрешность измерений, и дается она в процентах. В России есть следующие классы точности приборов по относительной погрешности: 6, 4, 2,5, 1,5, 1,0, 0,5, 0,2, 0,1, 0,05, 0,02, 0,01, 0,005, 0,002, 0,001. Указанная цифра показывает, на сколько процентов могут отличаться показания прибора от истинного значения измеряемой величины. Важно, что это актуально в диапазоне работы прибора, и этот диапазон должен указываться на приборе. Он не всегда совпадает с нулевой отметкой шкалы: при значениях, близких к нулю, вероятность погрешности стремится к бесконечности.

Если у прибора неравномерная шкала, то класс точности указывают цифрой, под которой стоит знак угла. Это значит, что погрешность дается в долях от длины шкалы.

Обозначение в виде дроби отображает погрешность в конце шкалы и в начале.

Отличием цифровых приборов является то, что измеряемый диапазон в них регулируется; это позволяет более точно производить измерения.

Выбор вольтметра

Если вы решили купить себе вольтметр, вам необходимо определиться со следующим:

  1. В каких диапазонах будут производиться измерения. Согласитесь, есть большая разница между работой на понижающей подстанции, где интервал — от 10 кВ до 380 В, и ремонтом бытовой техники, где этот диапазон — от 3 В до 220 В.
  2. В каких условиях будет эксплуатироваться прибор. Будет ли это дом, лаборатория, улица или вам нужно перемещаться по клиентам.
  3. Нет ли необходимости в измерении других параметров. Обычно она есть всегда, только весь вопрос в том, покупать ли отдельные приборы или один мультиметр.

Если вы работаете с высокими напряжениями, вам лучше остановить свой выбор на производителях электромеханических киловольтметрах. У них достаточный класс точности для больших величин, и при этом есть одно несомненное достоинство — надежность. У электронных устройств, работающих на микроэлектронике, с этим пока проблема: на перегрузки они реагируют плохо, ломаются. На рынке представлены как переносные, так и предназначенные для встройки в панель варианты таких приборов.

Стационарные устройства предпочтительнее для работы в лаборатории или мастерской. Они представлены довольно большим ассортиментом — как электромеханические, так и цифровые.

Некоторым людям, проживающим в частном секторе, нужен вольтметр для установки его в щиток (обычно он на столбе у дома). Для этого предназначены щитовые вольтметры, которые можно установить в din-рейку — как ставятся счетчики и УЗО, например. Стоят они от 900 до 4000 рублей, и чаще всего выпускаются в цифровом варианте, но если напряжение у вас в районе имеет привычку «скакать», то можно приобрести и электромеханический — они, кстати, дешевле.

Наконец, если вы производите измерения на выезде — вольтметра вам мало. С 90-х годов прошлого века среди тех, чья работа связана с перемещением получили популярность тестеры, или мультиметры. Они существовали и ранее, но их точность оставляла желать лучшего. Сейчас же выбор и качество этих приборов существенно возросли, при это цена на них сравнительно невысока. Какие же преимущества есть у тестеров?

Выпускаются как цифровые тестеры, так и аналоговые. Последние более надежны, но менее точны: время от времени приходится ставить стрелку на место.

Как пользоваться

Как подключается вольтметр? Параллельно! Это правило следовало выучить еще в школе.

Убедитесь, что диапазон измерений соответствует предполагаемому напряжению в цепи. Если этот диапазон большой (киловольты), пострадает точность, если маленький — пострадает прибор.

Если вольтметр электромеханический, правильно его установите. Производитель указывает, как это сделать. От этого зависит точность показаний.

Если вольтметр предназначен для измерения постоянного напряжения, не вздумайте делать им замер переменного. Если же он универсальный, то переключите его в нужный режим.

Вольтметр со стрелкой нуждается в корректировке стрелки в положение «0». Делается это с помощью отвертки, если нет специальной ручки.

Не хватайтесь за оголенные части щупов голыми руками, особенно если напряжение в сети более 60 В. Как минимум это малоприятно, как максимум — сами понимаете. С высокими напряжениями работают в перчатках.

Своими руками

Несмотря на то что выбор вольтметров сейчас огромен, всегда находятся люди, которым всегда хочется все сделать самим. С чем это связано — есть разные мнения. Я не буду комментировать ничьи желания, это не тема статьи. Зато расскажу, как сделать вольтметр своими руками (или переделать старый). Ведь ничего невозможного тут нет.

Электромеханический вольтметр

Вам понадобятся следующие компоненты:

На первой схеме представлен простой вольтметр постоянного тока с четырьмя диапазонами измерений — выбор диапазона зависит от того, на какую нагрузку мы поставим переключатель. На добавочных схемах мы видим : их монтаж расширяет применение прибора, теперь им можно измерять напряжение в сети переменного тока.

Перед сборкой убедитесь, что магнитная головка со стрелкой исправны, у нее не оторваны спиральные пружинки и рамка нормально ходит. После этого можно приступить к монтажу мостика, а потом — подсоединить магазин резисторов с переключателем. Вам также потребуется изготовить новую шкалу. Для этого заклейте старую бумагой, обрежьте по контуру и нарисуйте на ней 4 полукруглых линии. После сборки можете приступать к калибровке. Для этого нужно замерить напряжение тестером, а затем, переключив новое изделие на требуемый диапазон, новым нашим прибором. На шкале сделать отметку. И так до тех пор, пока шкала не будет проградуирована.

Предупреждение: перед испытаниями высоких напряжений наденьте перчатки.

При желании можно изготовить и цифровой вольтметр. Схем в сети для этого предостаточно, равно как и комплектующих. Одну из схем, на 8-разрядном микроконтроллере, я представлю здесь. Предназначена для измерения напряжений до 30 В

В общем, если ваши руки — не для скуки, дерзайте!

Для измерения переменного напряжения используются аналоговые электромеханические приборы (электромагнитные, электродинамические, редко - индукционные), аналоговые электронные приборы (в том числе выпрямительной системы) и цифровые измерительные приборы. Для измерений могут также использоваться компенсаторы, осциллографы, регистрирующие устройства и виртуальные приборы.

При измерении переменного напряжения следует различать мгновенное, амплитудное, среднее и действующее значения искомого напряжения.

Синусоидальное переменное напряжение может быть представлено в виде следующих соотношений:

где u(t) - мгновенное значение напряжения, В; U m - амплитудное значение напряжения, В; (У - среднее значение напряжения, В Т - период

(Т = 1//) искомого синусоидального напряжения, с; U - действующее значение напряжения, В.

Мгновенное значение переменного тока может быть отображено на электронном осциллографе или с помощью аналогового регистратора (самописца).

Средние, амплитудные и действующие значения переменных напряжений измеряются стрелочными или цифровыми приборами непосредственной оценки или компенсаторами переменных напряжений. Приборы для измерения средних и амплитудных значений используются сравнительно редко. Большая часть приборов градуируется в действующих значениях напряжения. Из этих соображений количественные значения напряжений, приведенные в учебном пособии, даны, как правило, в действующих значениях (см. выражение (23.25)).

При измерениях переменных величин большое значение имеет форма искомых напряжений, которые могут быть синусоидальными, прямоугольными, треугольными и др. В паспортах на приборы всегда указывается, для измерения каких напряжений рассчитан прибор (например, для измерения синусоидальных напряжений или прямоугольных). При этом всегда указывается, какой параметр переменного напряжения измеряется (амплитудное значение, среднее значение или действующее значение измеряемого напряжения). Как уже отмечалось, большей частью используется градуировка приборов в действующих значениях искомых переменных напряжений. В силу этого все далее рассматриваемые переменные напряжения даны в действующих значениях.

Для расширения пределов измерения вольтметров переменных напряжений используются добавочные сопротивления, измерительные трансформаторы и добавочные емкости (с приборами электростатической системы).

Использование добавочных сопротивлений для расширения пределов измерения уже рассмотрено в подразделе 23.2 применительно к вольтметрам постоянного напряжения и поэтому в данном подразделе не рассматривается. Не рассматриваются также измерительные трансформаторы напряжения и тока. Сведения по трансформаторам даны в литературе .

При более детальном рассмотрении использования добавочных емкостей для расширения пределов измерения электростатистики вольтметров может применяться одна дополнительная емкость (рис. 23.3, а) или же могут быть применены две дополнительные емкости (рис. 23.3, б).

Для схемы с одной дополнительной емкостью (рис. 23.3, а ) измеряемое напряжение U распределяется между емкостью вольтметра С у и дополнительной емкостью С обратно пропорционально значениям С у и С

Учитывая, что U c = U- Uy, можно записать

Рис. 23.3. Схема расширения пределов измерения электростатических

вольтметров:

а - схема с одной добавочной емкостью; б - схема с двумя добавочными емкостями; U - измеряемое переменное напряжение (действующее значение); С, С, С 2 - добавочные емкости; C v - емкость используемого электростатического вольтметра V; U c - падение напряжения на дополнительной емкости С; U v - показание электростатического вольтметра

Решая уравнение (23.27) относительно U, получим:

Из выражения (23.28) следует, что чем больше измеряемое напряжение U по сравнению с предельно допускаемым напряжением для данного электростатического механизма, тем меньше должна быть емкость С по сравнению с емкостью С у.

Следует отметить, что формула (23.28) правомерна лишь при идеальной изоляции конденсаторов, образующих емкости С и C v . Если же диэлектрик, изолирующий пластины конденсаторов друг от друга, имеет потери, то возникают дополнительные погрешности. Кроме того, емкость вольтметра С у зависит от измеряемого напряжения U, так как от U зависят показания вольтметра и соответственно взаимное расположение подвижных и неподвижных пластин, образующих электростатический измерительный механизм. Последнее обстоятельство приводит к появлению еще одной дополнительной погрешности.

Лучшие результаты получаются, если вместо одной добавочной емкости использовать две добавочные емкости С (и С 2 , образующие делитель напряжения (см. рис. 23.3, б).

Для схемы с двумя добавочными емкостями правомерно соотношение

где U a - падение напряжения на емкости С у

Учитывая, что можно записать

Решая уравнение (23.30) относительно U, получим:

Из выражения (23.31) можно сделать вывод, что если емкость конденсатора С 2 , к которому подключен вольтметр, значительно превышает емкость самого вольтметра, то распределение напряжения практически не зависит от показания вольтметра. Кроме того, при С 2 » С у изменение сопротивления изоляции конденсаторов С, и С 2 и частоты

Таблица 23.3

Пределы и погрешности измерения переменных напряжений

измеряемого напряжения также мало влияют на показания прибора. То есть при использовании двух добавочных емкостей дополнительные погрешности результатов измерений значительно снижаются.

Пределы измерения переменных напряжений приборами разных типов и наименьшие погрешности этих приборов приведены в табл. 23.3.

В качестве примеров в приложении 5 (табл. П.5.1) приведены технические характеристики универсальных вольтметров, позволяющих измерять, в том числе, и переменные напряжения.

В заключение следует отметить следующее.

Погрешности измерения токов (постоянных и переменных) приборами одного типа и в равных условиях всегда больше погрешностей измерения напряжений (и постоянных, и переменных). Погрешности измерения переменных токов и напряжений приборами одного типа и в равных условиях всегда больше погрешностей измерения постоянных токов и напряжений.

Более подробную информацию по затронутым вопросам можно получить в .