Аналоговый осциллограф принцип работы. Принцип работы осциллографа

В статье будет подробно рассказано о том, как пользоваться осциллографом, что это такое и для каких целей он необходим. Никакая лаборатория не может просуществовать без измерительной аппаратуры или источников сигналов, напряжений и токов. А если вы планируете заниматься проектированием и созданием различных устройств (особенно если речь идет о высокочастотной технике, например, инверторных блоках питания), то без осциллографа сделать что-либо окажется проблематично.

Что такое осциллограф

Это такой прибор, который позволяет «увидеть» напряжение, а если точнее, то его форму в течение определенного промежутка времени. С его помощью можно измерить немало параметров - напряжение, частоту, силу тока, углы сдвигов фаз. Но чем хорош особенно этот прибор, так это тем, что он позволяет визуально оценить форму сигнала. Ведь в большинстве случаев именно она говорит о том, что конкретно происходит в цепи, в которой проводится измерение.

В некоторых случаях, например, напряжение может содержать не только постоянную, но и переменную составляющую. И форма второй может быть далека от идеальной синусоиды. Такой сигнал вольтметры, например, воспринимают с большими погрешностями. Стрелочные приборы будут выдавать одно значение, цифровые - намного меньшее, а вольтметры постоянного тока в - несколько раз больше. Самое точное измерение получается провести именно при помощи описываемого в статье прибора. И не имеет значения, применяется ли осциллограф Н3013 (как пользоваться, рассмотрено ниже) либо иной модели. Измерения происходят одинаково.

Особенности прибора

Реализовать это довольно просто - необходимо ко входу усилителя подключить конденсатор. В данном случае вход закрыт. Обратите внимание на то, что в этом режиме измерения НЧ-сигналы с частотой менее 5 Гц ослабевают. Следовательно, измерять их можно лишь в режиме открытого входа.

Когда переключатель установлен в среднее положение, то от разъема входа отключается усилитель, и происходит замыкание на корпус. Благодаря этому имеется возможность установить развертку. Так как пользоваться осциллографом С1-49 и аналогами без знания основных органов управления невозможно, стоит о них более подробно поговорить.

Вход канала осциллографа

На передней панели имеется масштаб в вертикальной плоскости - он определяется при помощи регулятора чувствительности того канала, по которому происходит измерение. Существует возможность сменить масштаб не плавно, а ступенчато, при помощи переключателя. Какие задать значения можно с его помощью, смотрите на корпусе рядом с ним. На одной оси с этим переключателем находится регулятор для плавной корректировки (вот как пользоваться осциллографом С1-73 и аналогичными моделями).

На передней панели можно найти ручку с изображением двунаправленной стрелки. Если вращать ее, то график этого канала начнет перемещаться в вертикальной плоскости (вниз-вверх). Обратите внимание на то, что возле этой ручки имеется графическое обозначение, которое показывает, в какую сторону необходимо ее вращать, чтобы изменить значение множителя в меньшую или большую сторону. обоих каналов одинаковые. Кроме того, на передней панели имеются ручки регулировки контрастности, яркости, синхронизации. Стоит отметить, что цифровой карманный осциллограф (как пользоваться девайсом, мы рассматриваем) также имеет ряд настроек отображения графиков.

Как проводятся измерения

Продолжаем описывать, как пользоваться цифровым осциллографом или аналоговым. Важно отметить, что у них у всех есть недостаток. Стоит упомянуть одну особенность - все измерения осуществляются визуально, поэтому имеется риск того, что погрешность окажется высокой. Также следует учитывать тот факт, что напряжения развертки обладают крайне малой линейностью, что приводит к сдвига фаз или частоты примерно на 5%. Чтобы минимизировать эти погрешности, требуется выполнить одно простое условие - график должен занимать примерно 90% площади экрана. Когда проводятся измерения частоты и напряжения (имеется временной интервал), следует регуляторы корректировки усиления сигнала на входе и скорости развертки выставить в крайние правые положения. Стоит заметить одну особенность: так как пользоваться цифровым осциллографом может даже новичок, приборы с электронно-лучевой трубкой потеряли актуальность.

Как измерить напряжение

Чтобы провести измерение напряжения, необходимо использовать значения масштаба в вертикальной плоскости. Для начала нужно выполнить одно из этих действий:

  1. Соединить обе входные клеммы осциллографа между собой.
  2. Перевести переключатель режимов входа в положение, которое соответствует соединению с общим проводом. Затем регулятором, возле которого изображена двунаправленная стрелка, добиться того, чтобы линия развертки совпала с центральной (горизонтальной) чертой на экране.

Переводите прибор в режим измерений и подаете на вход сигнал, который необходимо исследовать. При этом в какое-либо рабочее положение устанавливается переключатель режимов. А вот как пользоваться портативным цифровым осциллографом? Немного сложнее - у таких приборов намного больше регулировок.

В результате можно видеть на экране некоторый график. Для точного измерения высоты следует использовать ручку с изображением горизонтальной двунаправленной стрелки. Добиваетесь того, чтобы верхняя точка графика попадала на расположенную в центре. На ней имеется градуировка, поэтому будет намного проще произвести расчет действующего напряжения в цепи.

Как измерить частоту

При помощи осциллографа можно провести измерения временных интервалов, в частности, периода сигнала. Вы понимаете, что частота любого сигнала всегда пропорциональна периоду. Измерение периода можно провести в любой области осциллограммы. Но удобнее и точнее провести замер в тех точках, в которых график пересекается с горизонтальной осью. Следовательно, перед началом измерений обязательно установите развертку четко на горизонтальную линию, расположенную по центру. Так как пользоваться портативным цифровым осциллографом намного проще, нежели аналоговым, последние давно канули в лету и редко используются для измерений.

Далее, используя рукоятку, обозначенную горизонтальной двунаправленной стрелкой, необходимо сместить начало периода с крайней левой линией на экране. После вычисления периода сигнала можно, используя простую формулу, рассчитать частоту. Для этого нужно единицу разделить на вычисленный ранее период. Точность измерений бывает различной. Чтобы увеличить ее, необходимо как можно сильнее растягивать график по горизонтали.

Обратите внимание на одну закономерность: при увеличении периода уменьшается частота (пропорция ведь обратная). И наоборот - при уменьшении периода происходит увеличение частоты. Низкое значение погрешности - это когда она составляет менее 1 процента. Но такую высокую точность не каждый осциллограф способен обеспечить. Только на цифровых, в которых линейная развертка, можно получить такие точные измерения.

Как определяется сдвиг фаз

А теперь о том, как пользоваться осциллографом С1-112А для измерения сдвига фаз. Но для начала - определение. Сдвиг фаз - это характеристика, показывающая, как располагаются относительно друг друга два процесса (колебательных) в течение некоторого времени. Причем измерение происходит не в секундах, а в частях периода. Другими словами, единица измерения - это единицы угла. Если сигналы будут одинаково располагаться взаимно, то у них сдвиг фаз будет также одинаков. Причем это не зависит от частоты и периода - реальный масштаб графиков на горизонтальной (временной) оси может быть любым.

Максимальная точность измерения будет в том случае, если растянуть график на всю длину экрана. В аналоговых осциллографах график сигнала для каждого канала будет иметь одну яркость и цвет. Чтобы отличить эти графики друг от друга, необходимо сделать для каждого свою амплитуду. И напряжение, которое подается на первый канал, важно делать максимально большим. При этом получится намного лучше удерживать синхронизацией изображение на экране. Вот как пользоваться осциллографом С1-112А. Другие приборы отличаются в эксплуатации незначительно.

Электронный осциллограф используют для исследования быстропеременных периодических процессов. Например, с помощью осциллографа можно измерить силу тока и напряжение, рассмотреть их изменение во времени. Можно измерять и сравнивать частоты и амплитуды различных переменных напряжений. Кроме того, осциллограф при применении соответствующих преобразователей позволяет исследовать неэлектрические процессы, например, измерять малые промежутки времени, периоды колебаний и т. д. Достоинствами электроннолучевого осциллографа является его высокая чувствительность и безинерционность действия, что позволяет исследовать процессы, длительность которых порядка 10 –6  10 –8 с.

Основным элементом электронного осциллографа является электронно-лучевая трубка (ЭЛТ). Схематическое устройство такой трубки показано на рис . 3. Электронно-лучевая трубка состоит из ряда металлических электродов, помещенных в стеклянный баллон. Из баллона выкачан воздух до давления порядка 10 –6 мм рт. ст. На передней части баллона нанесен тонкий слой флуоресцирующего. Под воздействием электронного луча флуоресцирующий экран (8) начинает светиться.

Рассмотрим электроды электронно-лучевой трубки в порядке их следования. Нить накала (1), по которой идет переменный ток, разогревает катод (2). Из катода, вследствие термоэлектронной эмиссии, вылетают электроны.

Термоэлектронная эмиссия - это явление испускания электронов нагретыми телами.

За катодом расположен управляющий электрод (3) в виде сетки или цилиндра с отверстиями. Работа его аналогична работе управляющей сетки в электронной лампе. При изменении потенциала управляющего электрода относительно катода изменяется интенсивность электронного потока, тем самым проводится изменение яркости светового пятна на экране трубки.

Первый и второй аноды (4 и 5), в виде цилиндров с диафрагмами, обеспечивают необходимую скорость движения электронов и создают электрическое поле определенной конфигурации, фокусирующее электронный поток в узкий пучок (луч).

Затем сфокусированный электронный луч проходит между двумя парами взаимно перпендикулярных отклоняющих пластин. При разных потенциалах на одной из пар отклоняющих пластин луч отклоняется в сторону пластины с большим потенциалом. Отклонение луча пропорционально приложенному напряжению. Вертикальные пластины (7) обеспечивают горизонтальное перемещение электронного луча по экрану, а горизонтальные (6) дают вертикальное перемещение луча.

1 - нить накала, 2 - катод, 3 - управляющий электрод, 4 - первый анод, 5 - второй анод, 6- пластины вертикального отклонения, 7 - пластины горизонтального отклонения, 8 - флуоресцирующий экран

Блок-схема осциллографа представлена на рис. 4. Осциллограф состоит из электронно-лучевой трубки (ЭЛТ), генератора напряжения развертки и двух усилителей. Один из усилителей, предназначенный для усиления исследуемого напряжения, обычно называют вертикальным усилителем, так как напряжение с него подается на горизонтально расположенные пластины электронно-лучевой трубки, которые обеспечивали вертикальное отклонение луча по экрану. Напряжение от второго усилителя подается на вертикальные пластины, обеспечивающие горизонтальное перемещение луча. Этот усилитель называется горизонтальным. Напряжение генератора развертки подается на пластины через горизонтальный усилитель.

Для исследования характера изменения электрических сигналов во времени используют специально вмонтированное в осциллограф устройство, называемое генератором развертки . Этот генератор вырабатывает пилообразное напряжение (рис .4), которое за время
линейно нарастает от нуля до максимального значения
, а затем за очень малое время
падает до нуля. Частоту пилообразного напряжения можно изменять с помощью рукоятки "частота развертки ". Пилообразное напряжение подается обычно на вертикальные пластины. При этом луч откланяется по горизонтали на величину пропорциональную значению пилообразного напряжения в данный момент. Так как это напряжение линейно возрастает со временем, то по горизонтали луч движется равномерно, что соответствует ходу времени, и, значит, смещение луча по горизонтали пропорционально времени. Поэтому при включенном генераторе развертки горизонталь считают осью времени.

При малых частотах развертки можно увидеть поступательное равномерное движение точки по горизонтали. Если частота развертки большая, то на экране видна только горизонтальная линия. Это происходит в силу инерции зрительного восприятия и послесвечения трубки, т.е. зрительно при больших частотах мы не успеваем отметить последовательное перемещение луча по экрану слева направо при увеличении напряжения. От нуля до максимума и почти мгновенное возвращения луча в исходное положение. На каждом следующем "зубце пилы" луч движется по одному и тому же следу слева направо по горизонтали и обратно, и повторяется это с частотой равной частоте развертки.

Чтобы увидеть, как меняется со временем исследуемое напряжение, надо одновременно подать на"Вход х " напряжение развертки, а на "Вход у " исследуемый сигнал
. Пусть к моменту времениисследуемый сигнал достигает значения
, а напряжение развертки значения
. Луч, участвуя одновременно в двух взаимно перпендикулярных движениях: по горизонтали (под действием напряжения развертки) и по вертикали (под действием исследуемого напряжения
), переместится в точку(рис.5 ). Если исследуемое напряжение меняется по гармоническому закону и его период совпадает с периодом развертки
, то в течение времени
на экране луч "выпишет" один период синусоиды. На каждом следующем зубце пилы при достижении напряжением значений
,
,
и т.д. электронный луч будет попадать соответственно в те же точки,,и т.д. синусоиды, что и на первом "зубце".

Изображение на экране осциллографа будет неподвижным, если период развертки равен или в целое число раз больше периода исследуемого сигнала. При невыполнении этого условия (часто случающегося из-за нестабильности частоты генератора развертки) изображение будет "плыть" по экрану.

Для измерения периода надо на горизонтальные пластины подать исследуемое напряжение и включить генератор развертки "Вход х ", подающий пилообразное напряжение на вертикальные пластины. Вращая ручку "генератор развертки ", получить на экране устойчивую картину – синусоиду. Посчитать количество клеток периода синусоиды и, помножив на цену деления генератора развертки, получить период колебаний.

Устройство осциллографа

Осцилло́граф (лат. oscillo - качаюсь + греч. γραφω - пишу) - прибор, предназначенный для исследования (наблюдения, записи; также измерения) амплитудных и временны́х параметров электрического сигнала, подаваемого на его вход, либо непосредственно на экране.

По назначению и способу вывода измерительной информации:

Осциллографы с периодической развёрткой для непосредственного наблюдения формы сигнала на экране (электронно-лучевом, жидкокристаллическом и т. д.);

Осциллографы с непрерывной развёрткой для регистрации кривой на фотоленте (шлейфовый осциллограф).

По способу обработки входного сигнала

Аналоговый;

Цифровой

По количеству лучей: однолучевые, двулучевые и т. д. Количество лучей может достигать 16-ти и более (n-лучевой осциллограф имеет nное количество сигнальных входов и может одновременно отображать на экране n графиков входных сигналов).

Осциллографы с периодической развёрткой делятся на: универсальные (обычные), скоростные, стробоскопические, запоминающие и специальные; цифровые осциллографы могут сочетать возможность использования разных функций.

Также существуют осциллографы, совмещенные с другими измерительными приборами (напр. мультиметром).

Осциллограф также может существовать не только в качестве автономного прибора, но и в виде приставки к компьютеру (подключаемой через какой-либо порт: LPT, COM, USB, вход звуковой карты).

С помощью электронного осциллографа можно наблюдать форму электрического сигнала, что делает его незаменимым при наладке и исследовании радиоэлектронной аппаратуры. Кроме того, электронным осциллографом можно измерять напряжение в исследуемых цепях; при этом он практически не потребляет энергии от исследуемый цепи и может работать в широком диапазоне частот. Благодаря этим свойствам прибора его широко применяют не только в радиотехнике, но и в других областях научных исследований.

Несмотря на разнообразие схем электронных осциллографов, они основаны на использовании электронно-лучевой трубки (ЭЛТ). Осциллограф с дисплеем на базе ЭЛТ состоит из электронно-лучевой трубки, блока горизонтальной развертки и входного усилителя (для усиления слабых входных сигналов). Также содержатся вспомогательные блоки: блок управления яркости, блок вертикальной развертки, калибратор длительности, калибратор амплитуды.

Рассмотрим типичную электронно-лучевую трубку с электростатическим управлением. Трубку откачивают до высокого вакуума, чтобы электроны могли двигаться без столкновения с молекулами воздуха (рис. 1).


Накаленный катод является источником электронов. Электроны летят вдоль оси трубки благодаря действию ускоряющего электрода или анода А, потенциал которого поддерживается положительным (несколько сотен или тысяч вольт) по отношению к катоду К.

Анод в простейшем случае представляет собой круглый диск с отверстием, из которого выходит некоторое количество электронов в виде узкого пучка (электронного луча). Пучок, распространяющийся вдоль оси трубки, попадает на флуоресцирующий экран, где часть кинетической энергии электронов превращается в световую энергию, и появляется светящейся пятно.

Катод окружен цилиндрическим электродом G, имеющим отрицательный потенциал по отношению к катоду. Электрод выполняет две функции: собирает электроны вдоль оси трубки и управляет (как и сетка в электронной лампе) количеством электронов, идущих от катода к аноду. В электронно-лучевой трубке количество электронов, зависящее от потенциала управляющего электрода, определяет яркость светящегося пятна на экране трубки. Катод, сетка и анод составляют так называемую "электронную пушку", или "электронный прожектор".

В трубке простого устройства светящееся пятно на экране будет похоже скорее на светящийся диск, чем на точку. Это связано с действием сил взаимного расталкивания электронов в пучке и отклонением их от оси. Поэтому необходимо иметь устройство для превращения расходящегося электронного пучка в сходящийся. По аналогии с оптикой этот процесс называют фокусировкой.

При электростатической фокусировке вводят два или более анода, причем потенциал второго анода более высокий, чем потенциал первого. Электрон, отклонившийся от оси электронной пушки, попадает в поле между двумя анодами, стремясь следовать в направлении линий электрического поля, т. е. он отклоняется внутрь по направлению к оси. Степень сходимости и, следовательно, положение фокуса можно менять изменением потенциала одного из анодов.

Светящееся пятно перемещают по экрану в соответствии с исследуемым напряжением. Электронный луч проходит между двумя парами отклоняющих пластин, к которым приложено напряжение. Одна пара пластин Х1 и Х2 создает поперечное электрическое поле, вызывающее отклонение луча в горизонтальном направлении. Другая пара пластин Y1 и Y2 создает вертикальное отклонение луча. Чувствительность к отклонению определяется смещением светящегося пятна на экране, вызванным разностью потенциалов между пластинами 1 В. Чувствительность обратно пропорциональна ускоряющему напряжению, поэтому желательно иметь низкое анодное напряжение. Однако существует противоположные требования: яркость пятна увеличивается при возрастании анодного напряжения. Чувствительность типичной осциллографической трубки на среднее напряжение несколько меньше 1 мм/В.

1. Общее назначение и устройство электронного осциллографа.

2. Устройство и разновидности электронно-лучевых трубок.

3. Измерение параметров электрических сигналов с помощью электронного осциллографа.

8.1. ОБЩЕЕ НАЗНАЧЕНИЕ И УСТРОЙСТВО ЭЛЕКТРОННОГО ОСЦИЛЛОГРАФА.

Электронный осциллограф (ЭО) – это прибор для наблюдения функциональной связи между двумя или более физическими величинами, преобразованными в электрические параметры и характеризующими какой-либо физический процесс. Структурная схема ЭО показана на рис. 8.1.

Сигналы параметров подают на взаимно перпендикулярные отклоняющие пластины электронно-лучевой трубки (ЭЛТ) и наблюдают, измеряют и фотографируют графическое изображение (осциллограмму) исследуемой зависимости на экране трубки.

Рис. 8.1. Структурная схема электронного осциллографа.

При исследовании временной зависимости процесса исследуемый сигнал А поступает на вход усилителя вертикального отклонения Y (рис. 8.1).

Горизонтальное перемещение луча создается генератором развертки, перемещающим луч по оси Х.

Для одновременного исследования двух или более процессов (сигналов) используются многолучевые осциллографы.

Осциллографы делятся на универсальные, запоминающие, стробоскопические, скоростные и специальные.

Универсальные осциллографы устроены по схеме рис. 8.1.

Запоминающие имеют ЭЛТ с накоплением заряда. Они сохраняют изображение сигнала длительное время (даже при выключении осциллографа) и удобны для исследования однократных и редко повторяющихся процессов.

В стробоскопических осциллографах используется принцип последовательного стробирования (т.е. регистрации в течение очень короткого времени) мгновенных значений сигнала для его преобразования (сжатия или растяжения во времени). При каждом повторении сигнала отбирается мгновенное значение сигнала в одной точке, но точка отбора к приходу следующего сигнала перемещается по сигналу. Стробоскопические осциллографы наиболее широкополосны и позволяют исследовать периодические сигналы длительностью 10 –11 с.

Скоростные осциллографы позволяют исследовать не только периодические, но и однократные быстропротекающие процессы

Специальные осциллографы служат для исследования телевизионных или высоковольтных сигналов и т.п.

8.2. УСТРОЙСТВО И РАЗНОВИДНОСТИИ ЭЛТ.

ЭЛТ называют электровакуумные электронные приборы, у которых баллон имеет форму трубки и в которых используются сфокусированные в виде лучей потоки электронов.

Различают одно-, двух- и многолучевые ЭЛТ. В качестве основного признака классификации для ЭЛТ выбирают их назначение: приемные или передающие ЭЛТ (на телевидении), запоминающие или радиолокационные ЭЛТ, электронно-оптические преобразователи.

В приемных ЭЛТ последовательности электрических сигналов преобразуются в видимое изображение. К таким трубкам относятся индикаторные трубки РЛС, осциллографические трубки, кинескопы, мониторы дисплеев. В передающих трубках, наоборот, оптическое изображение преобразуется в последовательность электрических сигналов. В запоминающих трубках возможны и те, и другие преобразования.

В конструкциях большинства видов ЭЛТ присутствуют следующие основные элементы: электронный прожектор, отклоняющая система, экран для визуального отображения информации.

Для формирования и управления электронными потоками используются как электрические, так и магнитные поля. Электронный прожектор во всех ЭЛТ используется в принципе однотипный. Он состоит из катода (обычно оксидного) и нескольких электродов, формирующих электронный луч: модулятора, ускоряющего электрода, первого и второго анодов (рис. 8.2).

Модулятор находится под небольшим относительно катода регулируемым отрицательным напряжением 5-10 В, и, подобно управляющей сетке электронных ламп, управляет током электронного луча, т.е. в конечном счете – яркостью свечения экрана.

Аксиально-симметричные электрические поля в промежутках между электродами прожектора образуют электрические линзы, отклоняющие электроны к оси трубки, т.е. фокусирующие электронный луч. Ускоряющий электрод, отделяющий модулятор от анодов, предотвращает влияние изменения напряжения на модуляторе на качество фокусировки луча.

Рис. 8.2. Схема электронного прожектора ЭЛТ.

Цвет свечения экрана определяется химическим составом люминофора, нанесенного на внутреннюю поверхность колбы. Применяют силикат цинка Zn 2 SiO 4 (;желто-зеленый цвет свечения), сульфид цинка ZnS с примесью меди (зеленое свечение) или серебра (си

синее свечение). Экраны с длительным послесвечением, необходимые для РЛС, выполняют двухслойными (первый слой возбуждает свечение во втором). Экраны имеют круглую или прямоугольную форму; на них наносят масштабную сетку для отсчета измеряемых величин.

Яркость свечения люминофора зависит от его свойств и от мощности, подводимой к экрану. Увеличение яркости за счет плотности тока ограничено нарушением фокусировки луча и опасностью выгорания люминофора. Основной способ повышения яркости – увеличение ускоряющего напряжения. Однако при увеличении кинетической энергии электронов падает чувствительность трубки к отклоняющему напряжению:

s = h / U откл, т.е. величина отклонения пятна на экране трубки h , приходящейся на 1 В отклоняющего напряжения.

В современных ЭЛТ электронам придается большая энергия лишь после того, как они прошли отклоняющую систему (ЭЛТ с «послеускорением»). Для этого внутреннюю поверхность колбы от экрана до горловины покрывают коллоидным раствором графита – аквадагом, создающим проводящий слой, на который подается положительное напряжение, большее напряжения второго анода. Иногда высокоомный слой наносят на внутреннюю поверхность колбы в виде спирали с малым шагом, чтобы ускоряющее напряжение повышалось постепенно от второго анода до экрана.

Для исследования двух или более одновременно протекающих процессов применяют (2-5) ти -лучевые ЭЛТ, имеющие соответствующее число прожекторов, лучи которых фокусируются и отклоняются независимо.

Запоминающие ЭЛТ отличаются тем, что осциллограмма исследуемого процесса записывается электронным лучом не только в виде светящегося изображения на экране, но и одновременно в виде потенциального рельефа на поверхности помещенного перед экраном диэлектрика, способного длительное время сохранять этот рельеф. Это позволяет в дальнейшем многократно воспроизводить осциллограмму или увеличивать время ее свечения.

В трубках для РЛС сигнал на экране получают в полярных координатах, поэтому ЭЛТ для радиолокаторов имеют радиально-азимутальную развертку луча и работают в режиме яркостной отметки сигнала, подаваемого на модулятор прожектора. Электромагнитная отклоняющая система состоит из пары катушек, вращающихся вокруг горловины трубки синхронно с вращением антенны РЛС. Через катушки протекает ток линейно- пилообразной формы, отклоняющий луч по радиусу к периферии экрана. ЭЛТ должна обладать высокой разрешающей способностью, большой яркостью свечения, высоким контрастом изображения, линейностью отклонения луча и длительным послесвечением, чтобы за время полного оборота антенны на экране сохранялась полная картина отмеченных целей и местных предметов.

В ЭЛТ с электростатическим управлением отклоняющая система состоит из двух пар взаимно перпендикулярных пластин Х и У. Для получения осциллограммы – графика зависимости исследуемой величины от времени, исследуемое напряжение прикладывается к паре вертикально отклоняющих пластин «У», а между горизонтально отклоняющими пластинами «Х» подается пилообразное напряжение развертки. Если период развертки выбран кратным периоду исследуемого напряжения, то на экране наблюдается устойчивое и четкое изображение (график) исследуемого процесса.

Электромагнитные фокусирующие и отклоняющие системы позволяют получить более мощный луч, обеспечивающий высокую яркость экрана, и более высокое качество фокусировки по всей поверхности экрана по сравнению с чисто электростатическими системами.

Фокусирующая катушка, надетая на горловину трубки, создает резко неоднородное магнитное поле. Оно имеет осевую и радиальную составляющие вектора индукции. Если электроны влетают в магнитное поле под углом к вектору индукции, то за счет взаимодействия их с радиальной составляющей B r возникает сила Лоренца, закручивающая электроны вокруг оси трубки и сообщающая им угловую составляющую скорости. Эта составляющая, взаимодействуя с осевой составляющей B z вектора индукции, вызывает появление силы, направленной в сторону оси трубки. Величина этой силы тем больше, чем дальше удален электрон от оси трубки, поэтому при выходе из катушки электроны идут сходящимся пучком с фокусом на экране.

8.3. ИЗМЕРЕНИЕ ПАРАМЕТРОВ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ С ПОМОЩЬЮ ЭЛЕКТРОННОГО ОСЦИЛЛОГРАФА.

С помощью осциллографа можно наблюдать и регистрировать форму импульсов и измерять все основные параметры периодических процессов: амплитуду напряжений, частоту и фазу. Принцип регистрации и измерения напряжений U (t) ясен из рис. 8.1, а методы измерения частоты и фазы электрических колебаний будут рассмотрены ниже.

Каналы вертикального отклонения луча (лучей) имеют широкополосные усилители. В многолучевых осциллографах число усилителей равно числу лучей.

Для измерения амплитуд и длительностей сигналов на прозрачную пластину, прилегающую к экрану, наносят координатные оси с делениями, проградуированными в единицах напряжения (по оси «Y») или времени (по оси «Х») с помощью специальных калибровочных импульсов, вырабатываемых внутренним генератором.

При наблюдении периодических процессов (особенно – быстропротекающих) важно получить на экране осциллографа неподвижное изображение сигнала в функции времени. Для этого нужно, чтобы период развертки был равен или кратен периоду изучаемого сигнала. Однако. на практике, как правило, это условие соблюсти трудно. Поэтому используют принудительное согласование периодов сигналов по осям Х и Y, т.е. их синхронизацию. Целью синхронизации является обеспечение равенства частот исследуемого сигнала и развертки или их отличия в целое число раз.

Синхронизация заключается в том, что генератор пилообразного напряжения подает на отклоняющие пластины «Х» напряжение в строго определенные моменты времени. Эти моменты задаются либо специальными синхроимпульсами, вырабатываемыми внешним источником (внешняя синхронизация), либо определяются по моменту достижения исследуемым сигналом определенного уровня (внутренняя синхронизация).

Для измерения частоты и фазы гармонических колебаний с помощью электронного осциллографа часто используют так называемые фигуры Лисажу (ФЛ). Это – замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях (впервые изучены французским ученым Ж.Лисажу). Они легко наблюдаются на экране осциллографа, если соответствующие гармонические сигналы подать одновременно на горизонтально и вертикально отклоняющие пластины.

Вид фигур зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний. В простейшем случае равенства обоих периодов ФЛ представляют собой эллипсы, которые при разности фаз j = 0

или j = p вырождаются в отрезки прямых, а при j = p / 2 и равенстве амплитуд превращаются в окружности (рис. 8.3).

Рис. 8.3. Вид фигур Лисажу при различных соотношениях периодов колебаний (1: 1, 1: 2 и т.д.) и разностях фаз.

Если периоды обоих колебаний не совпадают точно, то их разность фаз все время меняется, вследствие чего эллипс непрерывно деформируется. При существенно разных периодах замкнутые кривые не наблюдаются, однако если периоды относятся как целые числа, получаются ФЛ более сложной формы, некоторые из которых показаны на рис. 8.3.

Электронный осциллограф (ЭО) — устройство, с помощью которого наблюдают, исследуют и измеряют амплитуды электрических сигналов и их временные параметры. Такой прибор является наиболее распространенным радиоизмерительным агрегатом, благодаря которому можно увидеть происходящие электрические процессы вне зависимости от момента появления импульса и его продолжительности. По передаваемому на экран изображению возможно с точностью определить амплитудные колебания исследуемого сигнала и их длительность на любом участке сети.

Осциллографы, работающие на основе электронно-лучевой трубки — громоздкие и маломобильные агрегаты. Однако они отличаются высокой точностью измерений. Такие приборы способны быстро обрабатывать входящие сигналы. Они имеют широкий частотный диапазон и отличную чувствительность.

Сфера использования ЭО

Область применения осциллографов обширна. С их помощью исследователь сможет наблюдать формы электрических импульсов, благодаря чему этот прибор стал незаменимым «помощником» в наладочных работах электронной аппаратуры. Возможности ЭО:

  • определение напряжения и временных параметров сигнала и его частоты;
  • наблюдение формы сигнала;
  • отслеживание искажения импульсов на любом участке сети;
  • определение сдвига фаз;
  • измерение силы тока, сопротивления.

При измерении значений напряжения в электрических цепях осциллограф практически не потребляет энергию и работает в широком диапазоне частот.

Электронный осциллограф используется в исследовательских лабораториях, диагностических автосервисах, в мастерских по ремонту электроники. Благодаря такому прибору можно оперативно определить причину неисправности микросхемы.

Устройство электронных осциллографов

Несмотря на широкий ассортимент радиоизмерительных приборов, схема осциллографа вне зависимости от модели и конструктивных особенностей агрегатов, примерно одна и та же. Наиболее важные составляющие любого ЭО:

  • электронно-лучевая трубка (ЭЛТ);
  • каналы отклонения (вертикальный и горизонтальный);
  • блок управления;
  • калибраторы;
  • источник питания.

Главная часть ЭО — вакуумная ЭЛТ, которая представляет собой вытянутую емкость из стекла. В ней находятся комплекс электродов (называемый электронной пушкой) и люминофорный экран, благодаря которому в результате попадания электронов, можно наблюдать биолюминесценцию. В вакуумной трубке также находится катод, модулятор, 2 анода и пара отклоняющих пластин. Горизонтальный канал содержит генератор развертки, синхронизирующее устройство и усилитель. В канал вертикального отклонения входит кабель соединения, входной тумблер, а также делители напряжения.

Блок управления предназначается для подсветки прямого хода развертки и необходим для погашения электронного луча в процессе возвратного хода. Калибратор — устройство, выполняющее функцию генератора напряжения. Он предназначен для высокоточного определения частоты и амплитуды импульсных сигналов. Питающий блок обеспечивает электропитание всех узлов и механизмов ЭО. На блок производится подача напряжения 220В, после чего происходит его преобразование и направление на накаливающие нити, генераторные усилители и иные составляющие прибора.

Особенности функционирования электронных осциллографов

Функционирование любых моделей ЭО предполагает превращение исследуемых импульсов в наглядный рисунок, отображаемый на экран вакуумной ЭЛТ. Испускание электронов осуществляется при помощи электронной пушки, которая расположена противоположно концу лучевой трубки. Между системой электродов и экраном расположен модулятор, посредством которого происходит регулировка потока электронов, а также 2 пары пластин, позволяющих производить отклонение электронного луча по горизонтали или вертикали.

Принцип работы ЭЛТ заключается в следующем: на нить накаливания подается переменное, а на модулятор — постоянное напряжение. На отклоняющиеся пластины производится подача постоянного напряжения, за счет чего происходит смещение потока электронов в стороны, и переменного, необходимого для создания линии развертки. На ее длину влияет значение амплитуды пилообразного напряжения. При единовременной подаче напряжения на одну и вторую пару пластин на экране отображается синусоидальная линия развертки исследуемого импульса.

Выбор ЭО в зависимости от назначения

Самыми распространенными моделями электронных осциллографов считаются универсальные устройства. В них подача исследуемого сигнала осуществляется через аттенюаторы и усилители на вертикально отклоняющуюся ЭЛТ. Горизонтальный уклон происходит за счет генератора развертки. Такие приборы позволяют исследовать электрические импульсы в широком диапазоне частот и амплитуд. Благодаря этим моделям осциллографов возможно измерение длительности поступающего сигнала от долей секунд.

Использование стробоскопических электронных осциллографов позволяет проводить исследование форм и измерять амплитудные и временные параметры периодически возникающих сигналов. Такие приборы необходимы, чтобы исследовать переходные процессы в быстродействующей полупроводниковой технике, микромодульных и интегральных устройствах. При помощи этого измерительного прибора можно наблюдать за повторяющимися сигналами с длительностью в доли секунд.

Специальные электронно-лучевые осциллографы предназначены для решения конкретных задач. Чаще всего такие приборы применяют для исследования телевизионных и радиолокационных сигналов. Агрегаты специального назначения содержат в своем устройстве специфические узлы.

Также широко распространены запоминающие осциллографы. Они применяются при необходимости исследования медленных процессов и одиночных импульсов. Такие модели ЭО оснащены специальным устройством с памятью, благодаря которому возможно сохранить полученные данные на определенное время. В случае необходимости сигнал можно воспроизвести для его исследования и последующей обработки.

Для наблюдения за гармоничными или импульсными сигналами, протекающими в режиме реального времени за единицы наносекунд, используют скоростные ЭО. Оперативная обработка импульсов такими устройствами достигается за счет применения ЭЛТ с бегущей волной. У этих приборов нет генерирующего усилителя в вертикальном канале отклонения.

Огромным спросом также пользуются ЭО со сменными блоками. Меняя блок на приборе можно изменять его характеристики и основные рабочие параметры, такие как:

  • полоса пропускания;
  • коэффициент развертки;
  • значение отклонения.

При помощи смены блока возможно изменение функциональных возможностей устройства.

Выбор ЭО в зависимости от числа каналов


Производители радиоизмерительных приборов выпускают осциллографы, которые могут быть одно, двух или многолучевыми, а также двух и многоканальными. Однолучевой ЭО — агрегат, имеющий одно входное устройство. Самыми распространенными считаются двухлучевые и двухканальные приборы. Они предназначены для одновременного наблюдения и исследования на одном экране ЭЛТ двух импульсных сигналов.

Двухлучевые осциллографы удобно использовать при необходимости сопоставления импульсных сигналов на выходе и входе, для наблюдения за разными преобразователями и для решения других задач. Эти электронные устройства имеют 4 рабочих режима:

  1. Одноканальный, при активации которого работает только один из двух каналов.
  2. Чередования, позволяющего включать по очереди один и второй канал после каждой развертки.
  3. Прерывания, позволяющего активировать оба канала. Однако их переключение происходит с неодинаковой частотой.
  4. Сложения, благодаря которому оба канала функционируют при одной нагрузке.

Двухканальные и двулучевые устройства имеют свои достоинства и недостатки. Преимущества первых - бюджетная цена и отличные технические характеристики. Достоинства вторых заключаются в возможности исследования двух сигналов как раздельно, так и вместе. Многолучевые электронные приборы произведены по принципу двухлучевых. Сколько лучей имеет осциллограф, столько же у него имеется и сигнальных входов.

Достоинства электронных осциллографов

Электронные осциллографы имеют ряд важных преимуществ:

  • оперативное измерение осциллографом амплитуды сигнала;
  • высокая устойчивость изображения;
  • повышенная чувствительность;
  • огромные функциональные возможности практического применения.

Измерения, сделанные ЭО, имеют исключительную наглядность. С их помощью можно рассмотреть любые электрические процессы. По изображению на ЭЛТ возможно произвести измерение и сравнение токов и напряжения вне зависимости от формы, а также произвести оценку их амплитудных значений, фазовых характеристик различной техники. Осциллограф — простой прибор с высокой точностью измерений. Наличие огромного ассортимента таких радиоизмерительных устройств позволит подобрать прибор для конкретных целей.

Особенности подключения ЭО

Подключение радиоизмерительного прибора к источнику исследуемых сигналов необходимо производить при помощи проводов и коаксиального кабеля. Для наблюдения за непрерывными низко и среднечастотными импульсами следует использовать соединительные провода. С целью исследования импульсов и высокочастотных напряжений целесообразно применить кабели высокой частоты. Чтобы ослабить влияние входной цепи, прибор подключают при помощи повторителя. Такое приспособление имеет большое активное сопротивление, небольшую входную емкость, равнозначные амплитудные и частотные параметры, малый коэффициент передачи.

В случаях измерения напряжения с высоковольтным импульсом между выходом источника сигнала и входом в радиоизмерительный прибор необходимо включить делитель напряжения. Для того чтобы избежать искажений при выдаче коротких импульсов, целесообразно применять высокочастотные кабели, имеющие минимальную длину. При необходимости получения осциллограмм с импульсами тока, в исследуемую цепь следует включить дополнительный резистор с малым значением индуктивности.